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ABSTRACT 
 
 
 
The first phase of this research demonstrates improvements in the performance of 

branch-and-price algorithms (B&P) for solving integer programs by (i) stabilizing dual 

variables during column generation, (ii) performing strong branching, (iii) inserting 

multiple near-optimal columns from each subproblem, (iv) heuristically improving 

feasible integer solutions, and by applying several other techniques.  Computational 

testing on generalized-assignment problems shows that solution times decrease over 

“naïve” B&P by as much as 96%; and, some problems that could not be solved by 

standard branch and bound on the standard model formulation have become easy.  

In the second phase, this research shows how to solve a class of difficult, 

stochastic mixed-integer programs using B&P.  A new, column-oriented formulation of a 

stochastic facility-location problem (SFLP), using a scenario representation of 

uncertainty, provides a vehicle for demonstrating this method’s viability.  Computational 

results show that B&P can be orders of magnitude faster than solving the original 

problem by branch and bound, and this can be true even for single-scenario problems; 

i.e., for deterministic problems.  B&P also solves SFLP exactly when random parameters 

are modeled through certain continuous probability distributions.  In practice, these 

problems solve more quickly than comparable scenario-based problems, with say, 50 

scenarios.  
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EXECUTIVE SUMMARY 
 
 

Integer programs are used to model real-world decision-making problems 

involving discrete decisions such as:  (a) which subset of a set of orders should be 

assigned to each truck in a fleet of trucks so as to minimize total delivery costs?, (b) how  

should aircrews be assigned to flights to ensure that an airline’s schedule of flights is 

properly crewed at minimum cost?, and (c) which set of potential production facilities 

should be opened to meet future, estimated customer demands at minimum cost?  The 

purpose of this thesis is to provide new methods to solve certain integer programs more 

efficiently, and to extend those methods to handle uncertainty in model parameters.  We 

are concerned with “column-oriented formulations” of integer programs solved through a 

“branch-and-price algorithm.” 

A “column-oriented formulation” of an integer program may, in theory, require 

much less (branch-and-bound) enumeration to solve than a standard formulation, making 

it an attractive alternative.  On the other hand, it must normally be solved using “dynamic 

column generation” because typical column-oriented formulations have too many 

variables (columns) to write down explicitly:  The model’s variables are generated “on 

the fly,” according to standard optimization theory.  Dynamic column generation can 

directly solve linear programs, but must be embedded within a branch-and-bound 

algorithm to solve an integer program.  The combined technique is called “branch and 

price.”   Branch and price is clearly more difficult to implement that standard branch and 

bound, and, consequently, the body of research on this topic is limited.  Room for 

computational improvements exists, as well as room for a broader class of applications. 

The first phase of this research demonstrates improvements in the performance of 

branch-and-price algorithms (B&P) for solving integer programs by (i) stabilizing dual 

variables during column-generation, (ii) performing strong branching, (iii) inserting 

multiple near-optimal columns from each subproblem, and through other techniques.  

“Duals stabilization” uses standard non-linear programming techniques to improve the 

column-generation phase of the overall B&P algorithm.  And, strong branching is, 

essentially, a “look-ahead procedure” that decides which fractional variable to branch on 

by actually performing the branching on each of a set of candidates, and following the 
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branch that appears most attractive.  (This contrasts with standard methods that compute 

“attractiveness” based solely on information from the current solution.)  “Inserting 

multiple near-optimal columns” simply means that, instead of generating just a few new 

columns (variables) in each iteration of the algorithm, we generate many.  

  Computational testing on generalized-assignment problems shows that the 

computational enhancements described decrease solution times by as much as 96% over 

“naïve” B&P.  Furthermore, some problems that could not be solved by branch and 

bound on the standard model formulation become easy.  

The second phase of this research shows how to formulate and solve a class of 

difficult, stochastic mixed-integer programs using B&P.  A “stochastic program” directly 

models the uncertainty that one faces in many decision-making problems.  For instance, 

in the facility-location problem alluded to in item (c) above, a stochastic program 

explicitly models the uncertainty in costs, and/or demands and/or capacities.  We first 

show that a number of stochastic programs have column-oriented formulations that are 

amenable to solution by B&P.  We then use a stochastic facility-location problem 

(SFLP), having a scenario representation of uncertainty, to demonstrate the potential 

usefulness of our methods.  Computational results show that B&P can be orders of 

magnitude faster than solving the original problem by branch and bound, and this can be 

true even for single-scenario problems, i.e., for deterministic problems.  B&P also solves 

SFLP exactly when random parameters are modeled through certain continuous 

probability.  In practice, these problems solve more quickly than comparable scenario-

based problems, with say, 50 scenarios. 
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 I. INTRODUCTION  
 

Gilmore and Gomory (1961) develop dynamic column generation to solve linear 

programs, or approximations to integer programs, that have too many variables to be 

explicitly inserted into a mathematical model stored in a computer.  The limited computer 

memories of that era spurred the interest in this technique.  Dynamic column generation 

initially defines a small subset of the full problem’s columns (variables), and solves to 

optimality the resulting restricted linear program (LP).  Next, the dual solution for this 

restricted LP helps generate (identify and create) one or more columns left out of the 

initial subset that have favorable reduced costs.  These columns are inserted into the 

restricted model, the new restricted LP is solved, and the process repeats until no column 

with favorable reduced cost can be found.  At this point, the optimal solution of the 

restricted LP is also optimal for the full (linear) problem, and typically, only a small 

subset of the full model’s columns will have ever been generated. 

Column generation seemed to lose its attractiveness to researchers and 

practitioners during the 1970s and 1980s, because computer memory and power 

improved so much that problems formerly solved with column generation could be 

solved directly.  After all, the solution of a single, explicit linear or integer program is 

much easier to develop and manage than is an iterative technique like column generation.  

In the 1990s, however, column-generation reappeared as a key technique to help solve 

difficult mixed-integer programs (MIPs), e.g., crew scheduling problems (Anbil et al. 

1992), and vehicle routing problems (Desrosiers et al. 1995).  The key advantage of 

dynamic column generation in this context is that it can exploit problem formulations that 

have much tighter linear-programming relaxations than more traditional, compact 

formulations.   

To solve a MIP, column generation must be merged into a branch-and-bound 

framework, because the column-generation process by itself does not necessarily lead to 

the generation of all columns needed for a good solution to the MIP.  Even a feasible 

solution is uncertain.  Although not the first to use the combined solution technique, 
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Savelsbergh (1997) labeled the technique “branch and price,” and that label now prevails 

in the literature. 

The purpose of this dissertation is twofold: (i) to improve the efficiency of 

branch-and-price algorithms, and (ii) to extend the application of branch and price to a 

class of two-stage stochastic programs.  The results of this research are presented in 

chapters II and III. 

Savelsbergh uses the generalized assignment problem for developing the 

techniques of branch and price.  Chapter II of this dissertation builds upon his work, 

using the same class of problems to demonstrate a number of new techniques that 

substantially improve the performance of branch and price.  These techniques include (i) 

stabilizing dual variables during column generation, (ii) performing strong branching, 

(iii) inserting multiple near-optimal columns from each subproblem, (iv) heuristically 

improving feasible integer solutions, (v) eliminating “unprofitable columns,” and (vi) 

solving only one subproblem at a time, instead of all possible subproblems, before re-

solving the restricted master problem. 

Having a good implementation of a B&P in hand, chapter III extends its 

application to a class of stochastic mixed-integer programs (SMIPs).  This application of 

B&P to SMIPs is only the third in the literature, and uses a totally different approach than 

the first two (Damodaran and Wilhelm 2004, Lulli and Sen 2004; however see also 

Shiina and Birge 2004 and Singh et al. 2004, who investigate column generation to solve 

SMIPs, without using a formal B&P algorithm).  We demonstrate the B&P approach in 

detail on a stochastic facility-location problem, where uncertainty is represented by a 

finite number of scenarios, or through continuously distributed random parameters that 

satisfy certain assumptions.  These models are solved exactly, an uncommon result in the 

stochastic-programming literature, where probabilistic guarantees for solution quality are 

the norm (e.g., Laporte and Louveaux 1993, Carøe and Tind 1998, Sen and Higle 2000). 

Chapter IV summarizes the contributions of this research recommends areas for 

further work. 
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 II. IMPROVING BRANCH AND PRICE  
 

A. INTRODUCTION 

The seminal work of Ford and Fulkerson (1958), which suggests dealing 

implicitly with the variables of a multicommodity-flow problem, signals a way to solve 

linear programs (LPs) with too many variables to list explicitly.  We shall call the 

technique they suggest dynamic column generation.  Dantzig-Wolfe decomposition 

(Dantzig and Wolfe 1960) extends this approach to general linear programs.  Gilmore and 

Gomory (1961) then apply this strategy to solve an integer program (IP), specifically, the 

cutting-stock problem.  Gilmore and Gomory round their LP solution to an integer one 

with good results, but with no method for guaranteeing an epsilon-optimal solution.  

Appelgren (1969, 1971) applies Dantzig-Wolfe decomposition to a ship scheduling 

problem, an IP, to make it eligible for dynamic column-generation.  However, his 

solution approach cannot guarantee optimal solutions, either.  Johnson (1989) proposes 

embedding dynamic column generation within an integer-programming, branch-and-

bound algorithm to overcome this difficulty.  Savelsbergh (1997) introduces the now-

standard phrase branch and price (B&P) to describe this combined technique; however, 

Desrochers and Soumis (1989), Anbil et al. (1992), and others, use the technique earlier 

for such applications as routing and scheduling.  Our research demonstrates how to 

improve the performance of B&P algorithms.   

We assume an IP formulation with too many columns (variables) to be written 

down explicitly:  if it were not for the huge number of columns, we would prefer this 

formulation to a more compact one because it possesses a tighter LP relaxation.  We 

begin our solution procedure for the IP by creating a restricted master problem (RMP) 

that contains an explicit subset of the IP’s columns; typically, an ad hoc procedure creates 

these columns.  Then, dynamic column generation (i) solves the linear-programming (LP) 

relaxation of the RMP (LP-RMP) (ii) identifies one or more new columns with favorable 

reduced cost by solving one or more optimizing subproblems, (iii) adds these new 

columns to the RMP (enlarging the explicit subset of columns under consideration), and 

(iv) repeats steps (i) through (iii) until the LP-RMP has been solved to optimality.  
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Normally, we will not have to generate all possible columns for the master problem; only 

a small fraction of them will be created.  This is the key to the value of dynamic column 

generation. 

The column-generation process uses the dual solution of the LP-RMP together 

with an optimization subproblem to construct one or more columns that have favorable 

reduced costs.  No such column can be contained in the current RMP so the column, or 

columns, are added to the column subset, and the LP-RMP re-optimized.  Typically, the 

original IP has a special subproblem structure, and the Dantzig-Wolfe reformulation has 

multiple convexity constraints, each corresponding to a separate column-generation 

subproblem.  Thus, it is natural to generate one column for each convexity constraint, i.e., 

the best column in each subset of implicit columns.   

Unfortunately, optimally solving the LP-RMP by dynamic column generation 

does not guarantee that the integer solution to that RMP is optimal to the original IP; even 

integer feasibility is uncertain.  This is true because dynamic column generation, 

fundamentally a linear-programming procedure, may not generate all columns necessary 

for an IP solution.  Finding the optimal IP solution for the full problem requires that some 

type of branch-and-bound procedure be applied along with further column-generation 

within the branch-and-bound search tree.  This is branch and price.  (Solution procedures 

based solely on cutting-plane approaches seem impractical.)  Fathoming of nodes in the 

search tree occurs in the standard fashion:  An optimal integer solution to the RMP is 

identified, or bounding information indicates that any solution satisfying the node’s 

restrictions can be no better than an incumbent solution, or the problem is infeasible. 

We demonstrate our techniques for improving the efficiency of B&P with the 

generalized assignment problem (Ross and Soland 1975, Cattrysse and Van Wassenhove 

1992).  Savelsbergh (1997) investigates B&P for solving this problem, and substantially 

improves solution times compared to the standard, compact formulation solved by branch 

and bound.  Our work may be viewed as an extension of his research.  We reduce 

solution times for branch-and-price by using features such as: 

- stabilizing dual variables during the column-generation phase; 
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- performing strong branching; 

- inserting multiple near-optimal columns from each subproblem; and 

- heuristically improving feasible integer solutions. 

We have not found these enhancements grouped in any other paper on B&P 

algorithms.  Moreover, we have implemented our enhanced B&P algorithm using a 

framework provided by freely available, open-source code libraries.  Together with the 

fact that we solve the LP-RMPs using a standard, commercial optimizer, we believe that 

this will make B&P more accessible to the OR community.  

The next section defines the generalized assignment problem.  Section C 

discusses the particulars of branch and price and then covers some implementational 

issues together with the basic algorithm.  Section D explores enhancements to the basic 

algorithm and section E demonstrates their usefulness with computational tests.  The final 

section, section F, presents conclusions. 

 

B. GENERALIZED ASSIGNMENT PROBLEM 

The generalized assignment problem (GAP) describes the problem of finding a 

minimum-cost assignment cost of m capacity-consuming tasks to n capacitated agents, 

such that (i) each task is assigned to exactly one agent, and (ii) the agents’ capacities are 

respected.  The problem is NP-hard in the strong sense (Martello and Toth 1990, pp. 6-9), 

and has been studied extensively in the literature; Cattrysse and Van Wassenhove (1992) 

and Osman (1995) provide good summaries.  The standard formulation for the GAP is: 

Indices 

i ∈ I agents 

j ∈ J tasks 

Data [units] 

cij cost of assigning task j to agent i [dollars] 

wij amount of agent i’s capacity consumed by task j [hours] 

di  capacity of agent i [hours] 
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Decision variables  

xij 1 if task j is assigned to agent i, and 0 otherwise 

Formulation (GAP) 

 min ij ij
i I j J

c x
∈ ∈
∑ ∑

x
 (1) 

 s.t. 1ij
i I

x j J
∈

= ∀ ∈∑  (2) 

            ij ij i
j J

dw x i I
∈

≤ ∀ ∈∑  (3) 

 {0,1} ,ijx i I j J∈ ∀ ∈ ∀ ∈ . (4) 

 

We shall call the above the compact formulation of the GAP.  

The compact formulation of the GAP challenges LP-based branch-and-bound 

solvers despite its apparent simplicity (e.g., Guignard and Rosenwein 1989, Cattrysse et 

al. 1994, Appleget and Wood 2000).  The LP relaxation of GAP can be quite poor.  One 

approach to improving the situation is to use a completely different formulation, a 

column-oriented formulation, which normally has a tighter relaxation.  The column-

oriented formulation can be derived formally through an extension of Dantzig-Wolfe 

decomposition (Dantzig and Wolfe 1960, Desrosiers et al. 1995, Wolsey 1998, section 

11.2). 

We state the GAP’s column-oriented formulation next, and refer to it henceforth 

as “CGAP.” CGAP does, indeed, have a tighter LP relaxation than the compact 

formulation because it eliminates fractional solutions that are not convex combinations of 

the 0-1 solutions to the knapsack constraints (3).  

Indices 

i ∈ I agents 

j ∈ J tasks 

k ∈ Ki joint assignments of tasks to agent i that are feasible with respect to constraint (3) 

Data [units] 

ˆk
ijx   1 if task j is assigned to agent i in the kth joint assignment of tasks to agent i  
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ˆk
ic  cost of the kth joint assignment of tasks to agent i ( ˆ ˆk k

i ij ij
j J

c c x
∈

= ∑ ) [dollars] 

Decision variables  

k
iλ  1 if the kth joint assignment of tasks to agent i is chosen, and 0 otherwise; 

Formulation (CGAP) 

 ˆmin
i

k k
i i

i I k K
c λ

∈ ∈
∑ ∑

?
 (5) 

 ˆs.t. 1
i

k k
ij i

i I k K
x j Jλ

∈ ∈
= ∀ ∈∑ ∑  (6) 

 1
i

k
i

k K
i Iλ

∈
= ∀ ∈∑  (7) 

 {0,1} ,k
i ii I k Kλ ∈ ∀ ∈ ∀ ∈ . (8) 

  

Typically, the LP relaxation of a column-oriented formulation like CGAP cannot 

be solved directly due to the large number of columns.  Therefore, each Ki is replaced by 

a subset in an RMP we denote as “RCGAP.”  To solve the LP relaxation of RCGAP, we 

generate additional columns in a subproblem, on demand.  The subproblem associated 

with agent i, used to check if a column with negative reduced cost exists, is 

 ˆˆmin ( )
i

ij j ij i
j J

c xα β
∈

− −∑
x

 (9) 

 s.t. ij ij i
j J

dw x
∈

≤∑  (10) 

 {0,1} ,ijx i I j J∈ ∀ ∈ ∈ , (11) 

 

where ˆ jα  is the dual variable in the relaxed RCGAP associated with constraint (6), and  

îβ  is the dual of the convexity constraint (7). 

 

C. BRANCH AND PRICE  

Branch and price has been found to be useful for solving certain IPs having 

column-oriented formulations.  However, some fundamental difficulties arise when 
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applying column-generation techniques for LPs within a branch-and-bound algorithm for 

an IP.  As Savelsbergh (2001) notes:  

- Conventional branching on variables may be ineffective because fixing 

variables can destroy the structure of the pricing subproblem. 

- Column generation often converges slowly, and solving LPs to optimality 

may become computationally prohibitive. 

As an example of the first issue, suppose one attempts to apply a standard 

branching rule on a fractional variable k
iλ  in the LP relaxation of RCGAP by fixing this 

variable’s value to zero.  The subproblem related to agent i will probably have to be 

solved again, and it is quite likely that the same assignment k will be found as a solution.  

If this happens, it will be necessary to find the second best subproblem solution by 

enumeration, or by adding a constraint that forbids the first.  At depth p in the branch and 

bound tree, it may be necessary to find the pth best subproblem solution.  This is 

definitely a more difficult problem:  The simple knapsack structure of the subproblem 

would be lost by adding constraints, or an enumeration algorithm would be required.  

(Actually, it turns out that enumerating near-optimal assignments, and hence the pth best 

assignment, using DP is not difficult with the GAP, and we will take advantage of this 

fact.  However, finding near-optimal solutions for more general column-generation 

problems can be quite difficult.)  Moreover, the subproblems formulated as mixed-integer 

programs (MIPs) become considerably harder to solve by branch and bound as the dual 

variables converge to their optimal values (Vanderbeck and Wolsey 1996). 

These two fundamental issues explain why standard MIP solvers, such as 

CPLEX, OSL and XPRESS, are not yet ready to embed B&P methodology, and why we 

must resort to specialized technology.  The options for implementing B&P will be 

discussed in the next section.  B&P algorithms are also highly dependent on the problem 

being solved when compared to the techniques like branch and cut, which standard 

solvers do implement.  A key point that contributes to making B&P more challenging is 

that, in standard branch and bound (and branch and cut), the IP solution always lies 
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within the convex hull of the IP’s LP-relaxation, while in branch and price, this may not 

be true until the model is solved. 

 

1. Options to Implement Branch and Price 

The issues discussed above make it impossible for MIP solvers at the current state 

of the art to perform B&P.  However, these solvers do typically implement branch and 

cut.  In branch and cut, an IP—the columns of this IP are explicit—is also solved by 

branch and bound.  However, the solver attempts, at each node in the enumeration tree, to 

improve the local lower bound on the optimal objective value by adding valid 

inequalities (“integer cutting planes,” or simply “cuts”).  These are simply inequalities 

that satisfy all feasible solutions to the IP.  Unfortunately, this framework is inadequate 

for handling the generation of new variables at each node of the branch-and-bound tree 

and to perform branching on multiple variables.  Consequently, at this time, researchers 

are forced to use additional software tools to produce an efficient implementation of the 

main B&P engine.  

Several software packages exist for solving problems by branch and price:  

COIN/BCP, Maestro, MINTO and Symphony.  Maestro is a C++ library being developed 

by ILOG, Inc. (Charbier 2003), but the product is not available for testing as this research 

is being conducted.  MINTO, the Mixed INTeger Optimizer (Savelsbergh and 

Nemhauser 1998), is available, free of charge, from the Georgia Institute of Technology.  

However, it is not open-source and only compiled libraries are provided 

(http://www.isye.gatech.edu/faculty/Martin_Savelsbergh/software).  We have chosen the 

COIN/BCP library for implementing B&P because all the source code is freely available 

and it can be linked to different solvers (http://www.coin-or.org).  SYMPHONY 

(SYMPHONY 2004) is another open-source library that presents a branch-and-price 

framework.  But, according to the SYMPHONY web site 

(http://branchandcut.org/SYMPHONY/faq.htm), “COIN/BCP has improved on 

SYMPHONY in some areas, however, such as support for branch and price.  

SYMPHONY's support for branch and price is limited.”  It also states that the two 

packages will merge in a near future.  
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2. COIN/BCP 

The COmputational INfrastructure for Operations Research (COIN-OR, or simply 

COIN) is described in its homepage (http://www.coin-or.org) as “an initiative to spur the 

development of open-source software for the operations research community.”  COIN-

OR may be viewed as a repository of distinct libraries that can be integrated to build 

optimization algorithms.  The libraries are managed by different projects, such as BCP: a 

parallel branch-cut-price framework; CGL: a cut-generation library; CLP: COIN native 

simplex solver; and OSI: an open solver interface layer. 

The Branch-Cut-Price (BCP) project (Lougee-Heimer 2003) presents a C++ 

framework for solving mixed-integer programs, in parallel, on a distributed network of 

workstations, using LP-based branch-and-cut and/or branch-and-price techniques.  IBM 

research has employed BCP successfully in several commercial projects (Anbil et al. 

1999, Ladanyi et al. 2001).  BCP is now integrated with the Open Solver Interface, and is 

in the process of being integrated with the Cut Generation Library (Ralphs and Ladanyi 

2001).  

A key advantage to BCP is that all the source code is freely available.  The IBM 

Corporation hosts the project by maintaining infrastructure to control code updates as 

well as maintaining a mailing list for COIN users.  Unfortunately, BCP is not formally 

compatible with the Windows operating systems; this has presented an extra challenge in 

our work.  (Indeed, several changes in BCP software have resulted from our research.)  

Additional disadvantages include incomplete documentation, and the fact that support is 

limited to the collaboration coming from a mailing list.  The reader should also note that 

BCP is designed for a parallel/distributed environment, and executing the code 

sequentially requires a protocol to emulate the parallel environment, and this entails some 

computational overhead (Ralphs and  Ladanyi 2001).   

The COIN-OR homepage (http://www.coin-or.org) and Lougee-Heimer (2003) 

explain why the idea behind this initiative seems promising.  Both sources point out that 

when an optimization algorithm is published, it is likely that other researchers will 

identify improvements.  However, testing new ideas typically requires re-implementing 

(and re-debugging and re-testing) the original algorithm.  Often, clever implementational 
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details remain unpublished, and it can be difficult to replicate reported performance.  If 

the original algorithm is made available in a community repository, weeks of re-

implementing will no longer be required.  A researcher can simply check out a copy of 

the code and make the modifications as necessary.  This software reuse may translate into 

improved productivity.  It is expected that papers from researchers using the COIN-OR 

library will start appearing in the literature (e.g., Lulli and Sen 2004). 

 

3. Basic Algorithm 

We describe a generic B&P algorithm next, and follow with certain details.  Note 

that we deal only with minimizing problems, so lower bound means an optimistic bound 

on the optimal objective value and upper bound means a pessimistic one.  We assume 

that the algorithm below is solving a MIP that has at least one feasible solution and that 

the RMP is always feasible.  (These assumptions are discussed in section b.) 

 
Basic Branch-and-Price Algorithm.   

 
Input:  The data for a compact MIP. 

Output:  The optimal objective value z* for the compact MIP and the solution x* for its 
column-oriented version, “CMIP”. 

 /* Conversion of x* into the solution for the compact MIP is always 
straightforward */ 

 
Step 1.  Initialize an RMP for CMIP with some small set of columns. 

Insert the RMP into the branch-and-bound tree as the root node, and mark this 
node as a candidate node.  

 Set the root node local lower bound z ← −∞ .  
 /* Each node has a local lower bound, z , associated with it. */ 
 Set the global upper bound z ← +∞ . 
   

Step 2  Delete all candidate nodes having z z> . 
 If there are no more candidate nodes then 

Print the CMIP’s optimal solution value z and its optimal solution x*.  
  STOP. 
 

Step 3  Select and remove a candidate node from the branch-and-bound tree, according 
to some user-defined search strategy. 

 Call the RMP at this node “the current RMP.” 
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Step 4 Optimally solve the LP relaxation of the current RMP for x̂ , objective value ẑ  
and dual variables p̂ . 

 
Step 5 If x̂  is integral and ˆz z> , then let ˆz z←  and x* ˆ← x . 

 
Step 6 Use p̂  to generate one or more new columns that price favorably for the 

column-oriented formulation.  /* As in equations (9)-(11), for example */ 
 

Step 7  If there exist favorable columns, then 
  Insert them into the current RMP and go to step 4. 
 Else If ˆz z≤  or x̂  is integer, then 
  Fathom this node and return to step 2. 
 
Step 8 Partition the current RMP into new problems according to the user-defined 

branching rules.   
 Add the new problems into the branch-and-bound tree as candidate nodes, and 

set their local lower bounds to ẑ .  
 Go to step 2. 
 
 

a. Initialization 

The LP solved at the root node of the branch-and-bound tree requires 

some initial columns.  To adopt a standard procedure for all problems, the initial subset 

of columns for each agent contains (i) the optimal solution of a knapsack problem that 

maximizes the assignment cost of allocating the tasks for that agent, and (ii) a null 

assignment.  It may seem odd to start with maximum-cost columns, but we do not find 

any differences in solution speeds when we use low-cost columns.  We do find that 

having “some columns” here is useful, however, and maximum-cost ones are easy to 

compute.  The null assignments help the algorithm find feasible solutions early in the 

solution process, and help simplify the overall procedure, as described below. 
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b. Infeasibility  

After branching, a local LP-RMP may become infeasible.  However, this 

LP-RMP is truly infeasible only if feasibility cannot be recovered by generating new 

columns.  Dual extreme rays can be used to recover feasibility (e.g., Bertsimas and 

Tsitsiklis 1997, Section 4.8), or we can reformulate the model so that no LP-RMP is ever 

infeasible.  We prefer the latter option for its simplicity, and reformulate the original 

GAP to allow penalized non-assignment of any task, i.e., to make constraints (2) 

“elastic.”  Consequently, constraints (6) in CGAP become elastic, and together with the 

initial null-assignment columns, this ensures that every LP-RMP has a feasible solution. 

 

c. Updating the Lower Bound 

During the column-generation phase, the LP lower bound for CGAP can 

be continuously updated based on the subproblems’ reduced costs (e.g., Lasdon 1970, 

section 3.7).  As the RMP-LP is being solved at a node in the enumeration tree, a lower 

bound on its LP solution, and hence its IP solution, is LP RMP i
i I

z c−
∈

+ ∑ , where zLP-RMP is the 

current optimal objective value of the LP-RMP and ic  is the minimum reduced cost for 

columns associated with subproblem i.   

Continuous updating of the lower bound can reduce computational effort 

in two ways:  (i) If that bound exceeds the current upper bound, the node may be 

fathomed even before local column-generation is complete, and (ii) the algorithm can use 

the information the bound provides to branch before actually solving the local LP-RMP 

completely.  The latter ability can help the algorithm avoid stalling, a behavior that has 

been reported in set-partitioning problems (Vanderbeck and Wolsey 1996).  

 

d. Branching 

Standard branching on fractional variables of problems when using 

dynamic column generation may impose some difficulties, as discussed at the beginning 

of this section.  To overcome this, alternative branching rules can be used based on 

compact model’s variables.  The values of those variables can be easily calculated on the 
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fly from the current k
iλ variables, and used to drive the branching process.  We call this 

implicit-constraint branching (Ryan and Foster 1981, Appleget and Wood 2000).  This 

strategy, which is standard for B&P algorithms (e.g., Savelsbergh 1997, Barnhart et al. 

1998, Barnhart et al. 2000), maintains the subproblem structure and provides a clear way 

to partition the solution space when branching. 

Assume, for instance, we are branching on a fractional variable ijx  implied 

from a solution to RCGAP; two new RMPs are generated.  In the first one, xij is set to 1, 

meaning that all columns that represent a feasible assignment for the agent i, and do not 

have the task j assigned, are eliminated.  The knapsack subproblem associated with agent 

i must also be adjusted by fixing ijx to 1, which is straightforward to accomplish.  The 

second RMP has ijx  set to zero, so columns that include task j assigned to agent i are 

excluded, and ijx is set to 0 in the corresponding knapsack subproblem. 

 

D. POTENTIAL ENHANCEMENTS 

This section presents the techniques we have developed to improve the 

performance of B&P. 

 

1. Stabilizing Dual Variables   

First, let us define one iteration of the column-generation phase in the B&P 

algorithm to consist of one solution of the LP-RMP followed by the identification of one 

or more new columns to be added to RMP, before it is re-solved (Steps 4 through 6 in the 

basic algorithm).  During the column-generation phase, the dual values of the relaxed 

RMP do not converge smoothly to the final optimal values of the master problem 

(Lübbecke and Desrosiers 2002).  An effect called heading-in arises in early iterations, 

where, due to the poor dual information, many irrelevant columns are generated 

(Vanderbeck 2003).  This can cause much unnecessary work. 

From the dual point of view, adding columns to the LP-RMP is equivalent to 

adding rows (constraints) to its dual.  We are, in fact, maximizing a concave function (the 

dual solution to LP-RMP) using Kelley’s cutting-plane algorithm (Kelley 1960).  This 
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function is not well approximated in early iterations, implying poor initial solutions.  In 

essence, we are completely optimizing a poor approximation of the true function, and this 

leads to unnecessary work.  

A second effect tackled by duals stabilization, called tailing-off, is better known 

because of its presence when generating cuts in branch-and-cut algorithms (Johnson et al. 

2000).  Tailing-off refers to the large number of column-generation iterations often 

needed to prove LP optimality (Vanderbeck and Wolsey 1996).  One cause of this in our 

model may be the degeneracy common in set partitioning models (Butchers et al. 2001).  

Our approach to duals stabilization effectively perturbs the partitioning constraints’ right-

hand sides, which is known to diminish the effects of degeneracy (Charnes 1952).      

Initially, we tried a simple approach to stabilize duals by adjusting the dual vector 

p̂  with an exponential smoothing filter (Neame 1999).  Let ˆ tp  denote the dual vector 

obtained at Step 4 in the algorithm in the tth iteration of the column-generation phase, and 

let ˆ
tS  denote the current vector of smoothed duals.  The smoothing scheme defines the 

parameter α , 0 1α< < ,  sets 1 1
ˆ ˆ=S p  and  1

ˆ ˆˆ (1 )t t tα α −= + −S p S  for t > 1.  This is the 

exponential smoothing formula, and the parameter α is called the smoothing constant.  

The intuition is simple:  Especially in early iterations, the approximation of the dual 

objective function gets worse and worse the farther the new duals move from the current 

solution; so, it’s OK to find a good direction to move, but do not move too far.  

Unfortunately, this procedure provides only modest improvements in 

computational speed.  One of the reasons for this poor performance—this contrasts with 

the substantial performance gains reported by Neame (1999) when solving instances of 

the cutting-stock problem—might result from the fact that, unlike the cutting-stock 

problem, more than one subproblem is associated with the RMP for CGAP.  Therefore, 

the duals related to the task-assignment constraints (6) may be adequate for some agents 

but not for others.  However, they are all updated using the same rule.  Thus, this simple 

smoothing method may produce better results when applied to a model having only a 

single subproblem, e.g., the cutting-stock problem. 

To improve control over the dual variables and treat each one more 

independently, we use a method based on trust regions in the dual space.  Marsten (1975) 
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and Marsten et al. (1975) first use such trust regions to improve a column-generation 

algorithm; they call the technique the boxstep method.  They solve the Lagrangian dual 

problem over a box centered on the current values of the dual variables, preventing the 

algorithm from taking large steps.  Their box size is static, i.e., it does not change during 

the solution process.  Du Merle et al. (1999) exploit dynamic elastic trust regions for 

column generation, which we describe next. 

Consider first a bounded linear program P and its dual D: 
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Now, assume that the cardinality of x is large as in CGAP, and that (P) will be 

solved by column generation.  To apply a trust region for the dual variables, we insert 

bounded elastic (artificial) variables +y and −y  inserted into the constraints of P to create 

a new primal problem P%  and its respective dual D% : 
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As noted by Du Merle et al. (1999), if the last two constraints in D%  are written as 

− − + +− ≤ ≤ +d w p d w , and we set − += = ∞e e , we see the standard “hard” trust region 

of the boxstep method appears: Dual variables must lie in the interval [ , ]− +d d .  When 
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−e  and +e  are finite positive numbers, the dual variables can slip outside that interval, 

but incur a finite objective-function penalty as they do.  Figure 1, from Desrosiers et al. 

(2002), shows the penalties policy in the dual space, in reference to an arbitrary element 

of the dual vector p , with π̂  representing the center of the trust region. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.   Penalty policy in the dual space. 
 
 
To update the trust region, we (i) re-center the dual value and enlarge the interval, 

if the new dual solution is outside the interval, or (ii) re-center the dual value and reduce 

the interval, if the new dual is inside the interval.  The stopping criteria for the stabilized 

column generation are that (i) all subproblem solutions have non-negative objective 

values, and (ii) − += =y y 0 . 

 
2. Potential Enhancements in the Column-generation Phase 

The subproblems in CGAP are 0-1 knapsack problems, which are IPs that can be 

solved by standard LP-based branch and bound or using some specialized methodology 

(e.g., Martello et al. 2000).  We use a standard dynamic-programming algorithm (DP) to 

solve our knapsack problems (e.g., Martello and Toth 1990, Section 2.6).  A key 

advantage of DP is that the effort required to solve a subproblem does not materially 

change from iteration to iteration.  If solved with branch and bound, the subproblems 

might become considerably harder to solve as the duals variables of the LP-RMP 

converge to their optimal values (Vanderbeck and Wolsey 1996). 

Penalty

δ −

π
ω −− π̂

δ +

slope slope

ω +

ε −
ε +−
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We also apply some preprocessing to reduce a subproblem’s effective size and 

thereby reduce its solution time.  Clearly, any variable xij in the subproblem (9)-(11)  with 

effective cost cij – aj – ßi > 0 will be 0 in an optimal subproblem solution, so all such 

variables can be eliminated (for the time being).  Any variables xij that are fixed by 

branching also reduce the effective size of agent i’s subproblem.  

 

a. Inserting Multiple Columns for each Subproblem 

Instead of only inserting into the RMP a single column from an optimal 

subproblem solution, an alternative approach also inserts near-optimal solutions, hoping 

that some good columns can be generated in advance.  All columns with a favorable 

reduced cost are eligible to be inserted into the RMP in any iteration.  (Task-to-agent 

assignments with effective cost cij – aj – ßi > 0 cannot be removed from the subproblem if 

all these columns are to be generated, however.)  Unfortunately, the time required to find 

all such assignments would normally be prohibitive.  Moreover, most of those columns 

will not be used in an optimal solution and their inclusion in the RMP could increase its 

solution time. 

The natural way to deal with this issue is to limit the number of columns 

being inserted.  Trying to balance the trade-off between the time searching and the ability 

to select the near-optimal solutions, we have implemented an algorithm based on the 

shortest-path-enumeration algorithm presented by Carlyle and Wood (2003), which 

identifies near-optimal solutions within a factor 1+? of the best solution for any ? = 0.  

Surprisingly, the number of near-optimal solutions can still be quite large as the size of 

the problem grows, even for small ?.  Thus, we simply set ? to a small value and 

enumerate near-optimal solutions until some pre-specified limit is reached. 

The near-optimal solutions we generate can be biased by the way 

enumeration is performed, and we use this to our advantage.  Suppose we have found an 

initial optimal solution to the knapsack problem, and are now in the middle of the 

enumeration algorithm:  We are exploring whether or not unassigned items should be 

added to a partially filled knapsack as we build to a complete, near-optimal solution.  If 

the unassigned items are sorted so that we first explore those that are in the optimal 

solution, the near-optimal solutions the enumeration algorithm first discovers will be 
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similar to the optimal one.  If the items are sorted in the opposite order, then the first 

near-optimal solutions found will tend to be dissimilar to the optimal one.  We call the 

latter solutions nearly-orthogonal near-optimal solutions.  Nearly-orthogonal near-

optimal solutions work better in our tests.  The motivation to consider nearly-orthogonal 

assignments is clear:  Optimal columns generated by the subproblems tend to cover the 

same tasks for all agents, but only one agent can have a given task in an optimal solution. 

We note that Ryan (2004) uses a different method to achieve the same 

end.  He generates multiple columns for a set-partitioning model during each phase of 

dynamic column generation and desires that that the rows covered by these columns be 

“balanced.”  To do this, he simply tracks how many times a particular row is covered by 

the columns being generated, and stops generating any new columns for any row whose 

“coverage limit” has been reached.  We have not experimented with such a scheme. 

 

b. Solving Only One Subproblem in each Column-generation        
Iteration 

Decomposition algorithms for mathematical programs often lead to 

independent, easy-to-solve subproblems.  If the master problem is difficult to solve, as it 

may be with a MIP being solved by Benders decomposition (Benders 1962), then it 

seems sensible to solve all subproblems in each iteration of the algorithm:  Get as much 

information as possible out of the easy-to-solve subproblems before going back to the 

difficult master problem.  However, if we solve all subproblems in each iteration of B&P, 

and generate a column from each, those columns will likely overlap in the row coverage 

they provide, since their objective values are based on the same dual variables.  However, 

the final integer solution can only contain a non-intersecting subset of those columns, so 

we may be generating many unnecessary columns.  Since our master problem is easy to 

solve, why not generate and add just a single column to the RMP and then re-solve the 

master problem?  Furthermore, when considering just the LP-RMP, the reduced cost of a 

single column is more representative for the magnitude of a slope in object function 

improvement than the sum of the favorable reduced costs. 

To implement the technique of generating only a single favorable column 

per iteration, we begin by randomly ordering the agents.  Then, in that order, we begin 
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solving the subproblems and stop with the first subproblem that yields a favorable 

column.  That column inserted into the LP-RMP; the LP-RMP is re-solved; and its new 

dual variables extracted.  We then re-randomize the order of the subproblems and start 

the next iteration.  (Other randomization schemes are possible, of course, but this one is 

easy to implement and works well.)  

    

3. Heuristically Improving Integer Feasible Solutions  

When an integer feasible solution is found, it is possible to take some advantage 

of it by searching for better solutions in its neighborhood.  Finding superior integer 

solutions can accelerate B&P algorithms by (i) allowing the current node, or even other 

nodes in the branch-and-bound tree, to be pruned earlier, and by (ii) identifying new 

columns to be inserted to the RMP.  These new columns may not have a favorable 

reduced cost using the current duals because they were generated ahead of the column-

generation process.  We note that the neighborhood search is not restricted by the active 

branching rules in the current node.  The B&P algorithm accepts any improved solution.  

However, only columns that satisfy locally active branching rules should be inserted into 

the RMP of the current node; otherwise, the branch-and-bound scheme will be disrupted. 

For the GAP, we run a greedy heuristic each time an integer feasible solution is 

found.  The neighborhood search consists of a “1-opt heuristic” followed by a “2-opt 

heuristic” (Lin 1965).  The 1-opt heuristic attempts to improve the current solution’s 

objective value by reallocating a single task from the currently assigned agent to some 

other agent with sufficient capacity to add that task to his workload.  The 2-opt heuristic 

tries to improve a solution by swapping two tasks between agents subject to both agents’ 

capacity constraints staying satisfied.  These procedures are repeated until no 

improvements can be found.  As one would expect, these heuristics have been used 

before for solving the GAP (e.g., Osman 1995, Chu and Beasley 1997, Savelsbergh 

1997). 

 

4. Other Potential Enhancements 

Before presenting additional potential enhancements to B&P, we point out a 

feature that we consider a must in any algorithm based on solving LPs in a branch-and-
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bound tree, which is the use of warm starts (or “basis reuse”).  Each time the LP-RMP 

must be resolved, the previous basis is recovered and used to speed the solution of the 

modified problem.  COIN/BCP and COIN/OSI easily handle this feature.  Moreover, a 

warm start is also used when re-solving the restricted master problem after branching. 

 

a. Strong Branching  

In order to improve branching efficiency without increasing subproblem 

complexity, an approach called strong branching can be applied (Johnson et al. 2000).  

Initially, a small set of branching candidates xij are chosen.  For each of these candidates, 

the LP-RMP will be branched on and have its child nodes solved.  The algorithm then 

chooses the branching variable based on the objective values of the children:  We choose 

the branch having a child with the lowest lower bound.  (Essentially, this implements a 

“one-step look-ahead heuristic.”)  Basis-saving and warm-start features make this 

procedure reasonably efficient.   

 

b. Including Variables from the Compact Formulation 

Although we are using GAP to demonstrate our B&P enhancements, we 

wish to cite a feature that is more specific to problems that could be modeled through a 

column-oriented formulation if it were not for certain side constraints.  These additional 

constraints may destroy the structure of the pricing subproblem and make it difficult to 

solve (Vanderbeck 2000); branch and price might not appear so attractive in this case.  In 

the case of the GAP, side constraints that connect agents, e.g., priority assignments 

associated with seniority, would likely make DP solutions of subproblems impossible.  

But, suppose such constraints, say ′∈x X , are simple to state in the compact formulation.  

Then, we may simply change the master problem to explicitly incorporate the variables 

from the compact formulation, by adding the constraints  

 ˆ 0 , [ ]
i

k k
ij i ij ij

k K
x x i I j Jλ θ

∈
− = ∀ ∈ ∈∑  (14) 

 ,ijx X i I j J′∈ ∀ ∈ ∈ , (15) 

 
where ijθ  represents the dual variable associated with its respective constraint(14). 
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The objective function of the revised subproblem for agent i becomes 

ˆ ˆˆmin ( )ij j ij ij i
j J

c xα θ β
∈

− − −∑ , where all data and variables are the same as presented 

before.  As one can see, the additional constraints (14) together with the side constraints 

(15) do not change the subproblem structure. 

 

c. Deleting Poor Candidate Columns  

This feature deletes, at every specified number of column-generation 

iterations, all columns with reduced cost above a given threshold.  Intuitively, these 

columns are unlikely to contribute to the optimal solution, or at least to the optimal 

solution in the current branch of the enumeration tree.  These columns increase the size of 

the RMP and, consequently, increase solution times.  Many of these “poor columns” are 

generated at the beginning of the B&P algorithm and, the first few times this deletion 

procedure is executed, quite a few are eliminated.  In the final steps of the algorithm, this 

feature has little effect.  The enhancement has a parallel in the dual space, where non-

binding constraints can be deleted in Benders decomposition, if done judiciously (e.g., 

Alvarez 2004). 

 

E. COMPUTATIONAL RESULTS 

BCP/COIN is originally designed to be executed in a parallel/distributed 

environment, and the protocol that emulates this environment in a serial one incurs some 

computational overhead.  We prefer to report results that exclude this overhead, because 

it would not be difficult to eliminate it in a proper serial implementation.  Therefore, we 

report four different measures in the computational tests.  These measures are the total 

time solving the RMP relaxations (TSLP), total time solving the subproblems (TSS), total 

time spent branching (TB) and the total time (TT), which is the sum of the first three.  

TSS includes the time required to find and insert new columns, and TB includes the 

computation time spent performing strong branching, when that option is activated.  We 

note that, for our implementation, the overhead for a small problem seldom exceeds 50% 

of overall running time and its maximum value is 0.56 CPU seconds.  For problems with 

larger running times, overhead rarely exceeds 10% of the overall running time. 
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Our algorithm is implemented using COIN’s open solver interface (OSI), coupled 

with CPLEX 8.0.  Tests are carried out on a networked workstation with a 2 GHz 

Pentium 4 processor and 1 GB of RAM.  All problems are solved to optimality and the 

times are measured in CPU seconds.  We have also implemented a procedure to submit 

the GAP problems, in their compact formulation, to an IP solver.  These binary IPs are 

solved by CPLEX 8.0 using default options and solution times are presented under the 

heading “IP CPLEX.”  (We did not find any changes from the default options that 

produce consistently better solution times for these GAPs.) 

 

1. Parameter Settings and Other Details 

Many parameters that affect the performance of the computational enhancements 

must be set for testing.  We choose the parameter values empirically, after an initial set of 

testing considering problems of various sizes.  Therefore, the values we use might not be 

the best settings for a specific problem instance. 

 

a. Duals Stabilization 

In the duals stabilization, the initial interval for the duals, [ , ]− +d d , is set 

to [- 50, - 10].  The dual penalties −e  and +e  are randomly chosen in the interval [15,20].  

The other additional parameter we use is just a scale factor defining how much the trust 

region and the penalties will be enlarged and shrunk.  We use 0.07 for this value in all 

tests, meaning, for example, that the dual interval is multiplied by 1.07 for enlargement, 

and by 0.93 for shrinking.  We decrease the dual penalties until they cross a threshold 

value, set to 10-5.  After that, we keep their small values to help avoiding degeneracy, as 

explained previously. 

 

b. Strong Branching 

When using strong branching, the number of candidate variables selected 

for branching is two.  Strong branching on a standard (compact) integer program would 

use a larger number, i.e., check more branches, but the amount of work required to carry 

out strong branching there is much less than when using column generation.  
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c. Deleting Variables with Strongly Unfavorable Reduced Cost  

Columns with strongly unfavorable reduced cost are deleted after every 50 

column-generation iterations.  A column is deleted if its reduced cost is greater than 5% 

of the current objective value of the RMP.  

 

d. Solving One Subproblem at each Column-generation 
Iteration 

There are no parameters for this feature. 

 

e. Heuristic Improvements in Integer Feasible Solutions 

There are no parameters for this feature. 

 

f. Inserting Multiple, Near-orthogonal Columns   

The maximum number of near-optimal columns inserted is 10, and a 

column is deemed near-optimal only if it is within 20% of being optimal. 

 

2. Initial Tests: Basic B&P and B&P with Duals Stabilization 

We use three sets of GAP instances to evaluate our proposed enhancements to 

B&P.  The first two sets come from the OR-Library (Beasley 1990), while the third set 

represents instances of “class D” as described by Guignard and Rosenwein 1989 and 

Romeijn and Morales 2001.  The class-D problems have correlations between the cij and 

wij, which make them harder to solve.  

The first set of problems originates from the OR-Library (Beasley 1990).  The full 

set consists of twelve groups, each with a distinct combination of number of agents and 

number of tasks.  Each group contains five problem instances.  For testing purposes, we 

select a subset consisting of eight problem groups, shown in Table 1.  (We have omitted a 

few of the smaller problem groups because they solve too quickly and do not add any 

insight.) 
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  We refer to these as “regular problems,” because they appear in several studies 

in the literature (e.g, Amini and Racer 1994, Osman 1995, Chu and Beasley 1997, 

Savelsgergh 1997).  Although these problems are available in the OR Library, their 

compact formulations do not represent challenges for a state-of-the-art solver such as 

CPLEX, which can solve any of them in less than 1 CPU second on our computer. 

We have a goal in exploring the regular problems, however: We want to show 

that B&P does not spend excessive time trying to solve them compared to a standard, LP-

based branch-and-bound code.  We also show solution times for the algorithm described 

by Karabakal et al. (1992).  (The original code was obtained from the authors.)  This 

branch-and-bound algorithm incorporates an improved multiplier adjusting method 

(Fisher et al. 1986, Guignard and Rosenwein 1989), which is used to solve a Lagrangian 

relaxation of the GAP and derive improving feasible solutions.  The table below presents 

the results for each selected group, where each row shows average times across all five 

problems. 

 

Problem 
Group Agents Tasks IP 

(CPLEX) 

Karabakal et 
al. (1992) 
algorithm 

Basic B&P 
algorithm 

Enhanced B&P 
Algorithm: 

 Duals 
stabilization 

gap1   5 15 0.02 0.00 0.02 0.02 
gap4   5 30 0.08 0.13 0.26 0.24 
gap5   8 24 0.07 0.07 0.07 0.06 
gap8   8 48 0.61 9.35 1.04 0.80 
gap9 10 30 0.10 0.27 0.09 0.11 
gap10 10 40 0.21 4.30 0.26 0.22 
gap11 10 50 0.18 4.54 0.50 0.48 
gap12 10 60 0.26 46.59 1.89 1.18 

Table 1.   Average solution times (CPU seconds) for small generalized assignment 
problems we label as “regular problems.”  Each time represents the average 
over five instances. 

 

The computational times in Table 1 are too small to get the right idea about the 

impact of the enhancements we present in this research.  However, one can see that the 

differences between IP and the enhanced B&P are modest, indicating that B&P is a 
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reasonable choice for these problems.  This contrasts with the idea that B&P is only 

suitable for huge problems (Barnhart et al. 1998).  The performance of Karabakal’s 

algorithm seems to suffer considerably when problem sizes increase.  It performs better 

than IP (CPLEX) only for the smallest problems, and then only by a small amount.  

Therefore, to validate the benefits of the proposed enhancements we use harder problems 

and compare the results with the IP (CPLEX) performance.  We will, however, utilize the 

Karabakal et al. algorithm for certain other comparisons because Savelsbergh (1997) 

compares his algorithm to it.  

Solutions for a second set of problem instances demonstrate that, when regular 

problems are “scaled up,” the basic B&P solution times can be significantly improved 

with a few enhancements.  The second set of test problems also originates from the OR 

Library (Beasley 1990); Chu and Beasley (1997) categorize these as “large-sized 

problems” in their tests with genetic algorithms.  Table 2 shows problem statistics and 

how we have named these problems.  They are organized classes in according the way 

they are randomly generated (Martello and Toth 1990, Section 7.6):  Problems of class A 

generally admit many feasible solutions.  Problems of classes B and C have tighter 

capacity constraints, and, consequently, fewer feasible solutions.  Table 2 also presents 

the optimality gap for the compact and column-oriented formulation, so it is possible to 

see that the column-oriented formulation is substantially tighter.  

 

Problem Agents Tasks 

Compact 
formulation: 

optimality gap 
(%) 

Column-oriented 
formulation:  

optimality gap 
(%) 

A-1   5 100 0.02 0.00 
A-2 10 100 0.11 0.00 
A-3 20 100 0.08 0.00 
B-1   5 100 0.64 0.23 
B-2 10 100 0.45 0.00 
B-3 20 100 0.94 0.00 
C-1   5 100 0.36 0.07 
C-2 10 100 1.08 0.15 
C-3 20 100 1.97 0.11 

Table 2.   Optimality gaps for large-sized test problems from Chu and Beasley (1997). 
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The first enhancement tested is duals stabilization.  Table 3 shows that 

stabilization decreases the time spent in the column-generation phase, positively affecting 

TSS and TB.  (IP times are also presented for comparison.)  The next table presents 

another statistic called reduction factor (RF), defined as 

F
TT after additional enhancements has been applied

R 1
TT for the algorithm in its previous configuration

= − . 
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Problem IP CPLEX Basic B&P algorithm: 
No enhancements 

Enhanced B&P algorithm: 
 Duals stabilization 

RF 

 NN Time NN COLS TSLP TSS TB TT NN COLS TSLP TSS TB TT 
 (nodes)   (sec.) (nodes)  (sec.) (sec.) (sec.) (sec.) (nodes) (sec.) (sec.) (sec.) (sec.) 

 

A-1 1 0.02  1 5206 86.94 1.49 0.00 88.43 1 1893 29.68 0.53 0.00 30.20 0.66 
A-2 1 0.05 3 2901 9.11 0.36 0.06 9.53 5 1608 8.33 0.19 0.06 8.58 0.10 
A-3 1 0.05 1 1875 2.83 0.22 0.00 3.05 5 1342 2.61 0.13 0.03 2.77 0.09 
B-1 825 1.86 47 11131 121.76 5.33 7.36 134.46 57 5952 60.89 3.13 4.05 68.07 0.49 
B-2 1 0.10 1 2142 8.89 0.20 0.00 9.09 1 1443 6.66 0.28 0.00 6.94 0.24 
B-3 1 0.10 5 1559 3.30 0.06 0.06 3.42 5 1239 2.11 0.06 0.03 2.20 0.36 
C-1 147 0.32 21 4922 70.52 2.28 2.16 74.95 29 3081 36.22 1.72 1.95 39.89 0.47 
C-2 869 3.36 35 3271 17.73 0.55 1.28 19.56 31 2014 10.97 0.38 0.64 11.99 0.39 
C-3 464 3.40 13 1997 4.29 0.17 0.30 4.76 15 1877 3.83 0.17 0.11 4.11 0.14 

Legend: 
NN:   Number of nodes in enumeration tree 
COLS:  Total number of columns generated to solve the problem  
TSLP: Time spent solving the linear relaxation of the restricted master problem  
TSS: Time spent solving the subproblems   
TB: Time spent branching 
TT: TSSLP+TSS+TB 
RF: Reduction factor for enhanced B&P over basic B&P.  

 

Table 3.   Solution statistics for large-sized test problems from Chu and Beasley (1997).  This table compares IP (CPLEX), basic 
B&P and enhanced B&P using duals stabilization. 
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It is clear that, by reducing the number of columns that needs to be generated, 

duals stabilization substantially reduces computational time in the column-generation 

phase, which can be verified by the decrease in the time spent solving the LP-RMP and 

the subproblems.  The improvements are greater for those problems that have a larger 

ratio between the number of tasks and the number of agents (task/agent ratio). 

 

3. Further Tests: Duals Stabilization with Additional Enhancements 

Next, we combine duals stabilization with two more enhancements.  We apply 

strong branching and delete columns in the RMP with unfavorable reduced costs.  The 

number of allowed branching candidates is set to two, meaning that, at each branch, four 

new RMPs are solved, instead of the standard two.  Thus, it might be expected that the 

TB would be slightly larger.  However, this extra time is balanced with reduced TSLP, 

probably because strong branching helps the algorithm choose better paths through the 

enumeration tree, thereby reducing that tree’s size, and, consequently, the total number of 

columns that are generated.  To delete “poor” columns, we require the algorithm to 

“clean” the RMP every 50 column-generation iterations, eliminating all columns whose 

reduced cost is greater than 5% of the current objective-function value.   
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Problem IP CPLEX Enhanced B&P algorithm: 
 Duals stabilization 

Enhanced B&P algorithm: 
 Duals stabilization  
Strong branching 
Deleting columns 

RF 

 NN Time NN COLS TSLP TSS TB TT NN COLS TSLP TSS TB TT 
 (nodes)   (sec.) (nodes)  (sec.) (sec.) (sec.) (sec.) (nodes) (sec.) (sec.) (sec.) (sec.) 

 

A-1 1 0.02 1 1893 29.68 0.53 0.00 30.20 1 1663 26.24 0.44 0.00 26.68 0.12 
A-2 1 0.05 5 1608 8.33 0.19 0.06 8.58 5 1451 7.24 0.25 0.08 7.56 0.12 
A-3 1 0.05 5 1342 2.61 0.13 0.03 2.77 1 1237 2.37 0.09 0.00 2.47 0.11 
B-1 825 1.86 57 5952 60.89 3.13 4.05 68.07 19 4095 37.22 2.30 2.08 41.60 0.39 
B-2 1 0.10 1 1443 6.66 0.28 0.00 6.94 1 1250 6.09 0.17 0.00 6.27 0.10 
B-3 1 0.10 5 1239 2.11 0.06 0.03 2.20 7 1207 2.25 0.05 0.06 2.36 -0.07 
C-1 147 0.32 29 3081 36.22 1.72 1.95 39.89 11 2291 29.90 1.05 1.09 32.05 0.20 
C-2 869 3.36 31 2014 10.97 0.38 0.64 11.99 41 2300 11.81 0.55 1.77 14.13 -0.18 
C-3 464 3.40 15 1877 3.83 0.17 0.11 4.11 13 1806 3.36 0.14 0.12 3.62 0.12 

 Legend: 
NN:   Number of nodes in enumeration tree 
COLS: Total number of columns generated to solve the problem 
TSLP: Time spent solving the linear relaxation of the restricted master problem  
TSS: Time spent solving the subproblems   
TB: Time spent branching 
TT: TSSLP+TSS+TB 
RF: Reduction factor for multiply enhanced B&P compare to B&P with duals stabilization only  

Table 4.   Solution statistics for large-sized test problems from Chu and Beasley (1997).  This table compares the effect of strong 
branching and deleting columns in the RMP, in addition to duals stabilization.  
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The results in Table 4 show that, even after duals stabilization, additional 

improvements can be achieved. 

To continue testing the proposed enhancements, we now focus on problems 

whose compact formulations are difficult to solve with a conventional branch-and-bound 

algorithm.  Our goal is to show that B&P can provide solutions to problems that IP 

simply cannot solve.  The next set of problems—they are referred to as “class D” in the 

literature—exhibits strong correlations between the cij and wij (Guignard and Rosenwein 

1989).  These problems are generated according the following rules (see Savelsbergh 

1997, Romeijn and Morales 2001): 

ijw is an integer from the discrete uniform distribution on [1,100]. 

111ij ijc w k= − + , where k is an integer from the discrete uniform distribution on 

[–10,10]. 

0.8
i ij

j J
d w

I ∈
= × ∑ , where I  is the number of agents. 

The next table displays computational results obtained by applying different 

combinations of the enhancements.  The last column describes the enhancements used to 

solve each problem.  The same combination of the enhancements can affect problems of 

the same size in different ways.  Parameter settings are fixed for all tests, independent of 

problem size.  We display results only for the combination of enhancements that provide 

the best results, as the results vary for different problems. 
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Agents-
tasks IP CPLEX Basic B&P    

Algorithm 
Enhanced B&P 

Algorithm 
RF 

 
Enhancements  

 NN     TT  NN     TT NN     TT  (see legend) 
 (nodes)    (sec.) (nodes) (sec.) (nodes) (sec.)   

3-30 12729 4.86 795 17.64 91 
26.24 

1.23 0.93 Stz 
3-30 30968 11.23 217 4.77 323 

7.24 
4.03 0.15 Stz 

3-30 11248 4.69 187 4.67 55 
2.37 

0.67 0.85 Stz 
5-30 221693 123.81 2163 19.08 533 5.44 0.71 Stz-SB-D-H 
5-30 

 
299936 145.20 2231 21.20 61 0.81 0.96 Stz-SB-D-SO-H 

5-30 513014 261.36 3019 28.39 77 1.14 0.96 Stz-SB-D-SO-H 
10-30 * * 827 6.17 171 0.94 0.85 Stz 
10-30 * * 79 0.65 219 1.69 -1.60 Stz-SB 
10-30 * * 295 2.35 267 3.29 -0.40 Stz-SB-SO 
5-50 

 
3350 3.47 8679 214.86 581 19.59 0.91 Stz-SB 

5-50 128257 116.61 9183 216.38 4859 128.70 0.40 Stz-D-AO-H 
5-50 344300 340.73 18075 706.31 7507 346.54 0.51 Stz-SB-SO 

10-50 58080 77.89 4933 92.11 1185 21.79 0.76 Stz-D-SO-H 
10-50 3390470 6166.37 59929 1096.16 3589 49.39 0.95 Stz 
10-50 * * 15127 340.03 821 22.61 0.93 Stz-SB-SO 
5-100 1222683 2705.77 443 665.88 1467 1172.25 -0.76 Stz 
5-100 469958 1758.24 * * 2271 1023.61 >0.85 Stz-SB-SO 
5-100 33210 125.34 5177 3434.04 4491 1770.50 0.48 Stz-SB-SO 

Legend:   
Stz: Duals Stabilization 
SB: Strong branching 
D: Deleting variables with strongly unfavorable reduced cost  
SO: Solving one subproblem at each column-generation iteration 
H: Heuristic improvements in integer feasible solutions 
AO: Inserting multiple, near-orthogonal columns   

* Not solved to optimality after 7,200 CPU seconds. 

Table 5.   Solution statistics presenting the effect of different combinations of 
enhancements on test problems of class D. 

 

The results in Table 5 shows that only three easy test problems do not have their 

solution times improved by enhancements.  And, of the fifteen problems that do exhibit 

improved times, nine have solution times reduced by at least 85%.  The CPLEX IP solver 

is unable to solve the test problems with task/agent ratio of three.  However, our 

enhanced B&P algorithm easily solves those, and even the problems with higher 

task/agent ratios. 
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The reduction factor RF is calculated based on the CPU time.  However, if a 

similar reduction factor based on the number of nodes in the branch-and-bound tree were 

calculated, it would be almost identical to RF for problems where RF > 0.50.  This means 

that, for problems where the enhancements provides a significant improvement, most of 

that improvement results from fewer nodes being explored in the branch-and-bound tree.  

We conjecture, based on our experience with test problems, that the enhancements, 

mainly duals stabilization, reduce the number of columns in the RMP, and that having 

fewer columns somehow makes early branches more effective, allowing faster 

convergence.    

Other potential enhancements were unsuccessful.  For instance, forcing early 

branching when the lower bound does not show improvement for a specified number of 

column-generations:  Here, we detect when the algorithm is stalling by inspecting 

changes in the object function values.  However, there is a clear tendency to branch when 

the node solution is near the optimum and solution times actually increase.  It may be that 

duals stabilization is already substantially reducing any tailing-off behavior that early 

branching might usefully address, and thus early branching serves no purpose.  

In the next table, we again use the algorithm of Karabakal et al. (1992)—we shall 

refer to this hereafter as “the K-algorithm”—to compare results for 12 problems types, 

which also appear in Savelsbergh (1997).  Thus, Table 7 summarizes those results and 

compares some statistics with some from Savelsbergh (1997), who also uses the K-

algorithm in his comparisons.  We note that this is not a rigorous comparison, because 

Savelsbergh (1997) uses different hardware and software, and because our test instances 

are generated the same way, but are not identical.  However, as our work is inspired by 

Savelsbergh’s, we think that some comparison should be made. 

We choose several tasks-agents combinations, and randomly generate 10 

problems instances for each one of the GAP classes A, B and C, following the rules from 

Savelsbergh (1997).  Thus, each row in table 6 contains the average and the maximum 

over 10 problem instances.  The sizes of many of the problems tested by Savelsbergh do 

not favor our algorithm because it can easily solve them, not leaving much room for 

observing obvious improvement resulting from our enhancements.  For this reason, 
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among the problem types used by Savelsbergh to compare his algorithm to the K-

algorithm, we first choose the problems with 3 and 5 agents, and 50 tasks.  The high 

tasks/agents ratio should stress B&P more than standard branch-and-bound algorithms 

such as IP CPLEX and the K-algorithm, because such are likely to have many feasible 

solutions, which also means that the column-oriented formulation is likely to have a high 

column-to-row ratio.  For a second group, we choose the problems with the largest 

number of variables, which are the ones with 10 and 20 agents, and 50 tasks.  The 

statistics for IP CPLEX are also presented in Table 6. 

 

 
Problem 

 class IP CPLEX Karabakal et al. B&P + duals stabilization 

Agents- Nodes CPU sec. Nodes CPU sec. Nodes CPU sec. 

tasks Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. 

A-3-50 1.0 1 0.01 0.05 10.1 61 0.02 0.08 3.4 11 2.69 3.08 

A-5-50 1.0 1 0.01 0.02 20.3 98 0.03 0.11 2.6 11 1.20 1.52 

B-3-50 75.1 166 0.11 0.20 1304.6 10220 3.74 30.89 18.2 31 3.80 5.82 

B-5-50 125.3 510 0.20 0.67 548.9 2055 0.76 3.30 14.2 39 1.76 3.02 

C-3-50 83.5 313 0.10 0.28 633.9 2901 1.71 10.20 17.0 35 4.30 7.75 

C-5-50 142.6 453 0.23 0.59 367.4 1535 0.52 2.06 8.2 37 1.26 1.91 

A-10-50 1.0 1 0.01 0.02 39.0 170 0.07 0.27 1.8 5 0.49 0.56 

A-20-50 1.0 1 0.02 0.03 106.5 590 0.22 1.11 2.0 5 0.24 0.30 

B-10-50 1.0 1 0.03 0.08 487.6 1395 0.69 2.20 2.2 9 0.37 0.47 

B-20-50 1.0 1 0.03 0.05 2735.8 19501 4.33 29.08 3.4 17 0.20 0.35 

C-10-50 77.3 248 0.31 0.80 1268.4 3248 1.84 4.64 5.6 13 0.37 0.53 

C-20-50 16.6 95 0.23 0.58 8595.7 18918 13.84 27.84 8.4 23 0.20 0.33 

Table 6.   Solution statistics for problems similar to those in Savelsbergh (1997), 
comparing the solution times for IP CPLEX, the algorithm of Karabakal et al. 
(1992) and B&P with duals stabilization.  Averages are taken over 10 
randomly generated instances.  All problems are solved on a networked 
workstation with a 2 GHz Pentium 4 processor and 1 GB of RAM. 

 



 35

Problems: 
Class-

agents-tasks 

Ratio 1: 
Savelsbergh/ 

Karabakal et al. 
(Savelsbergh 1997) 

Ratio 2:                     
B&P with Stz/ 

Karabakal et al. 
(This research) 

Ratio:                      
Savelsbergh/ 
 B&P with Stz 

(Ratio 1/Ratio 2) 

Savelsbergh (1997): 
% of time spent in 
column generation 

B&P with Stz: 
% of time  spent in 
column-generation 

A-3-50 239.78 134.50 1.78 40 29 

A-5-50 21.01 40.00 0.53 50 38 

B-3-50 1.64 1.02 1.62 8 5 

B-5-50 2.72 2.32 1.17 11 7 

C-3-50 10.66 2.51 4.24 7 6 

C-5-50 3.87 2.42 1.60 9 12 

A-10-50 1.38 6.67 0.21 53 56 

A-20-50 0.21 1.09 0.19 63 50 

B-10-50 0.63 0.54 1.17 34 45 

B-20-50 0.01 0.05 0.32 50 29 

C-10-50 0.28 0.20 1.39 16 18 

C-20-50 0.02 0.01 1.37 26 12 

Legend:  Stz: Duals Stabilization 

Table 7.   Statistics comparing the results of the B&P algorithm presented in 
Savelsbergh (1997) and the improved B&P with duals stabilizations.  Ratios 
are with respect to solution times.  The ratio of ratios in column 4 indicates 
how much faster or slower B&P with duals stabilization is compared with the 
Savelsbergh algorithm.  Numbers greater than 1 favor our B&P algorithm.  

 

Table 7 only reveals a slight advantage in favor of our enhanced algorithm.  

However, due to the small solution times involved in this comparison, a more detailed 

analysis would not be well supported. 

   

F. FINAL REMARKS AND CONCLUSIONS 

This research demonstrates improvements in the performance of branch-and-price 

algorithms (B&P) for solving integer programs by applying enhancements such as 

stabilizing dual variables during column-generation, performing strong branching, 

inserting multiple near-optimal columns from each subproblem, heuristically improving 

feasible integer solutions. 

We believe that duals stabilization now comprises a necessary feature for any 

algorithm based on column generation.  The graph below (inspired by Kallehauge et al. 

2001) shows the effect of applying or not applying duals stabilization (only) for one of 
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the test problems.  The left axis has a logarithmic scale indicating the Euclidean distance 

between the current dual vector and the optimal one, while solving the linear relaxation 

of the restricted master problem (LP-RMP) at the first node of a B&P enumeration tree.  

The thicker line comes from the problem solved with duals stabilization.  As the left axis 

uses a logarithmic scale, the two end-points reflect the last Euclidean distances able to be 

plotted.  Figure 2 also shows the values of the objective function of the LP-RMP on the 

right axis.  This figure shows that stabilization substantially reduces the oscillation of the 

dual variables (heading-in effect) in the first steps of the column generation and the total 

number of iterations to find the optimal linear-program (LP) solution for the LP-RMP.  
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Figure 2.   Comparison between the convergence of a LP-RMP being solved with and 

without duals stabilization for a problem with 8 agents and 48 tasks. 

 

Our computational results show an effect that is opposite to that seen in many 

studies that solve the compact GAP formulation using branch and bound (e.g., Ross and 

Soland 1975, Fisher et al. 1986, Guignard and Rosenwein 1989, Marcello and Toth 1990, 

Karabakal et al. 1992 and Amini and Racer 1994).  In all of these references, algorithmic 
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performance tends to worsen as the task/agent ratio decreases (for a fixed number of 

tasks).  B&P’s performance improves as the task/agent ratio decreases.  Savelsbergh 

(1997) notes this also and explains the phenomenon as follows:  If the average number of 

tasks assigned to an agent (task/agent ratio) is small, the knapsack constraints in the 

subproblems will have only a relatively small number of feasible solutions.  This favors 

column generation because the total number of columns in the explicit column-oriented 

model will be relatively modest.  When the average number of tasks assigned to agents is 

large, the column-oriented model has many more columns and B&P suffers.  The class D 

test problems in Table 5 also have tighter knapsack constraints and consequently the 

subproblems in B&P tend to provide fewer feasible solutions than the problems in other 

classes.  That is the reason why our B&P algorithm exhibits outstanding performance 

with those problems. 

The discussion above indicates that B&P will sometimes replace branch and 

bound as the method of choice to solve an IP.  But, one method may be strong while the 

other is weak, so B&P is best viewed as a complement to branch and bound.  However, 

our research has shown improvements in B&P that should make it a more likely first 

choice in many cases. 
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 III. SOLVING A STOCHASTIC FACILITY-LOCATION 
PROBLEM BY BRANCH AND PRICE 

 

A. INTRODUCTION  

This research shows how certain stochastic mixed-integer programs (SMIPs) may 

be reformulated from their standard forms into column-oriented models, and then 

explains how to solve such models with a branch-and-price algorithm (B&P).  This 

solution approach is only just starting to be investigated for stochastic programs.  

However, B&P has proven useful for solving a number of deterministic integer-

programming problems (e.g., Savelsbergh 1997, Barnhart et al. 1998, Barnhart et al. 

2000), and we shall see that its usefulness can be extended to stochastic programming, 

too. 

We begin by describing a class of mixed-integer, two-stage, stochastic programs 

whose “normal,” compact formulation translates into a column-oriented formulation.  We 

then describe how a number of well-known deterministic models whose stochastic 

versions fit this framework: the generalized assignment problem (Ross and Soland 1975, 

Savelsbergh 1997, chapter II of this dissertation), the crew-scheduling problem of Vance 

et al. (1997), vehicle-routing problems (Desrosiers et al. 1995, Savelsbergh and Sol 1998) 

and the origin-destination integer multicommodity flow problem (Barnhart et al. 2000).  

We then describe yet another problem, a stochastic facility-location problem (SFLP), and 

use it to explore the B&P solution approach in detail. 

We initially model and solve a version of SFLP with uncertainty represented 

through scenarios.  Such representations often appear in the stochastic-programming 

literature (e.g., Butler and Dyer 1999, Chen et al. 2002, Ahmed and Sahinidis 2003, Lulli 

and Sen 2004).  A key advantage to the scenario-based representation is that it allows 

arbitrary dependence among uncertain parameters.  Another common approach in 

stochastic programming formulates a model through probability distributions, often 

continuous ones, defined on the model’s parameters; typically, independence among 

parameters is also assumed (e.g., Bertsimas 1992, Zhou and Liu 2003).  We will show 

how B&P can solve SFLP in this situation, too.  Furthermore, we will solve it exactly, 
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that is, with the same certitude that prevails in deterministic mixed-integer programs.  

This contrasts with alternative solution procedures that provide only probabilistic or 

asymptotic guarantees for solution quality (e.g., Carøe and Tind 1998, Sen and Higle 

2000, Ahmed and Sahinidis 2003). 

Solution methods for two-stage stochastic programs (TSSPs) with mixed-integer 

variables, having a scenario representation of uncertainty, are typically based on branch-

and-cut techniques applied to the deterministic mixed-integer problems, such as the 

integer L-shaped decomposition from Laporte and Louveaux (1993), and the 

decomposition methods from Carøe and Tind (1998) and from Sen and Higle (2000).  

These decompositions will suffer if the original formulation of the model has a poor 

continuous relaxation.  In contrast, B&P solves a column-oriented reformulation of a 

model, also by a form of decomposition, but that formulation will normally have a much 

tighter relaxation than the original model. 

Chapter II has demonstrated substantial improvements in the performance of B&P 

algorithms on deterministic problems.  This success leads us to explore B&P for solving 

mixed-integer TSSPs.  To our knowledge, only Lulli and Sen (2004) and Damodaran and 

Wilhelm (2004) have previously applied B&P to the stochastic-programming arena, 

specifically, for a multi-stage stochastic problem.  (However, see Shiina and Birge 2004 

and Singh et al. 2004, who investigate column generation to solve SMIPs, without using 

a formal B&P algorithm).  Their approach is different from ours, however, because they 

solve a pricing subproblem for each scenario and leave non-anticipativity constraints in 

their master problem.  In contrast, our master problem contains only first-stage 

variables—the issue of non-anticipativity constraints in the master problem is 

consequently moot—and our column-generation subproblems form stochastic programs 

in and of themselves.  Of course, these subproblems solve more quickly than the original, 

full-scale model. 

The next section presents a model for a class of mixed-integer TSSPs and shows 

how to convert that model to a column-oriented formulation.  Several models from the 

literature provide concrete examples for which the conversion applies.  Section C 

presents the SFLP using a scenario representation for the uncertainty, describes how to 
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solve it with B&P, and provides computational results.  Section D presents a version of 

SFLP where random parameters take on continuous distributions, describes how to solve 

it with B&P, and provides computational results.  Finally, section E summarizes the work 

and suggests areas for future research. 

 

B. GENERAL METHODOLOGY 

We assume the existence of a TSSP of the following form (see Birge and 

Louveaux 1997):  

Formulation (TSSP) 

 ( )min [ ( , )]
i

i i i i i
i I

E h
∈

+∑ ?x
c x x ?% %  (16) 

 s.t. i i
i I

A
∈

=∑ x b  (17) 

 i iX i I∈ ∀ ∈x  (18) 

                                                where  ( , ) min
i

i i i i ih =
y

x ? p y% %  (19) 

 s.t i i i i iD T≥ −y d x% % %      (20) 

 i iY∈y ,          (21) 

 

where i?%  is a random vector, vec( , , , )i i i i iD T≡? d p% % % % % .  The sets Xi and Yi contain, at a 

minimum, non-negativity constraints, but they may also include integrality requirements.  

i
E?%  denotes the mathematical expectation with respect to the random vector i?% .  

[ ( , )]
i

i i i
i I

E h
∈
∑ ? x ?% %  is called the recourse function and matrices iD%  are often referred to as 

recourse matrices (Walkup and Wets 1967).  We further assume that the model possesses 

the property of relatively complete recourse (Rockafellar and Wets 1976), which implies 

that for any i iX∈x , an optimal solution yi to constraints (20) and (21) can always be 

found. We note that iD I=%  in some of our examples, implying the property of simple 
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recourse (Beale 1955, Wets 1966).  However, this is not an inherent requirement of this 

class of problems.  

The key feature of this model is that the recourse function decomposes by 

“subproblem” i.  The general notation disguises some important applications where, for 

instance, each of the id%  represent a single, global demand vector, but this should be 

clarified through the examples. 

Now, we further assume that elements of vectors ix  are integer and the sets Xi are 

bounded.  The principles of Dantzig-Wolfe decomposition then apply (Dantzig and 

Wolfe 1960), as extended to integer programming by Appelgren (1969).  (See Wolsey 

1998, section 11.2, for a complete discussion.)   To this end, let ˆ k
i iX∈x ,  ik K∈ , denote 

the enumerated first-stage solutions for subproblem i; because of relatively complete 

recourse, ˆ( , )
i

k
i ii iE h 

 ? x ?% %  is well defined for all such ˆ k
ix .  The index sets Ki are finite, but 

normally extremely large.  Now, because of the special structure, we can embed 

ˆ[ ( , )]
i

k
i i iE h

?
x ?% % , the decomposed recourse function, into the column costs of a column-

oriented formulation for TSSP: 

 

Column-Oriented Two-Stage Stochastic Program (CTSSP) 

Indices 

i ∈ I subproblems  

k ∈ Ki feasible solutions from Xi 

Data 

ˆ k
ix   the kth  feasible solution; ˆ k

i iX∈x  

ic  the first-stage cost for the ith subproblem  

Decision variables  

k
iλ  1 if ˆ k

i iX∈x  is selected, and 0 otherwise 
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Formulation (CTSSP) 

 ( )ˆ ˆmin [ ( , )]
i

i

k k k
i i i i i

i I k K

E h λ
∈ ∈

+∑ ∑ ??
c x x ?% %  (22) 

 ( )ˆs.t.
i

k k
i i i

i I k K

A λ
∈ ∈

=∑ ∑ x b  (23) 

 1
i

k
i

k K

i Iλ
∈

= ∀ ∈∑  (24) 

 { }0,1 ,k
i i kλ ∈ ∀ . (25) 

 

CTSSP above can be applied when first-stage variables are general integers, but 

binary variables would be typical, and we assume that restriction from hereon for 

simplicity.  Second-stage variables may be continuous, integer or both.   

We next provide examples of how this reformulation technique applies to some 

problems from the literature.  We supply only short descriptions of the problems, and we 

ask to the reader to refer to the references for more details.   

 

1. Elastic Generalized Assignment Problem   
 (Brown and Graves 1981, Appleget and Wood 2000) 

In the elastic generalized assignment problem (EGAP), the objective is to 

minimize the cost of assigning capacity-consuming tasks j ∈ J to capacitated agents i ∈ I, 

so that (i) each task is assigned to exactly one agent, and (ii) the total capacity assigned to 

agent i does not exceed his capacity ui unless an appropriate per-unit penalty pi is paid.  If 

the capacity required by agent i to complete task j, is a random variable ijw% , and the 

direct cost of that assignment is ijc , then the stochastic model we wish to solve is (Spoerl 

and Wood 2003): 

SEGAP 

 [ ]min ( , )
iij ij i i i

i I j J
c x E h

∈ ∈

 
+ 

 
 

∑ ∑ w
x

x w% %  (26) 

 s.t. 1ij
i I

x j J
∈

= ∀ ∈∑  (27) 

 {0,1} ,ijx i I j J∈ ∀ ∈ ∀ ∈  (28) 
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 where   ( , ) mini i i i ih p y=
y

x w%  (29) 

 s.t i ij ij i
j J

y w x u
∈

≥ −∑ %  (30) 

 0iy ≥ . (31) 
 

Here, ijx equals 1 if task j is assigned to agent i and is 0 otherwise, ix is the vector of 

assignments for agent i, and iy  represents the amount by which agent i’s capacity is 

exceeded.  [ ( , )]
i i i iE hw x w% %  thus represents the expected capacity-violation penalty for 

agent i.  Note also that the “capacity-consumption vector” iw%  represents iT%  in TSSP, and 

if capacity consumption depends on the task, not the agent, then iT%  might be replaced by 

a single matrix T% . 

Now, the conversion of SEGAP to a column-oriented formulation is 

straightforward:  

 

Column-Oriented Formulation for SEGAP (CSEGAP)  

Indices 

i ∈ I agents  

j ∈ J tasks 

k ∈ Ki assignments of tasks to a given agent i 

Data 

ˆk
ijx  1 if task j is assigned to agent i in the kth assignment of tasks to agent  i 

ˆk
ic  expected cost of the kth assignment of tasks to agent i ( ˆ ˆ ˆ[ ( , )]

i

k k k
i i i i i ic E h= + wc x x w% % ) 

Decision variables  

k
iλ  1 if the kth assignment of tasks to facility i is chosen, and 0 otherwise 

Formulation (CSEGAP)   

 ˆmin
i

k k
i i

i I k K
c λ

∈ ∈
∑ ∑

?
 (32) 
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 ˆs.t. 1
i

k k
ij i

i I k K
x j Jλ

∈ ∈
= ∀ ∈∑ ∑  (33) 

 1
i

k
i

k K
i Iλ

∈
= ∀ ∈∑  (34) 

 {0,1} ,k
i ii I k Kλ ∈ ∀ ∈ ∈ . (35) 

 
Constraints (33) guarantee that each task j will be assigned to exactly one agent, 

and constraints (34) are the convexity constraints for each agent i. 

 

2. Time-Constrained Routing and Scheduling  
 (Desrosiers et al. 1995, Ribeiro and Soumis  1994) 

One subset of routing and scheduling problems is the vehicle routing problem 

with time windows (VRPTW).  Such a problem describes a fleet of vehicles required to 

visit a set of customers, each customer being represented by a node in a network.  The 

vehicles have restricted capacities and limited windows of time during which they should 

perform customer visits.  The goal is to assign each customer to a vehicle, such that the 

sum of capacities required for each customer does not exceed the vehicle’s capacity and 

such that each customer can be visited during the customer-specified time window.  The 

column-oriented formulation for this problem looks exactly like CSEGAP, equations  

(32)-(35), with indices, parameters and variables appropriately redefined.  The 

parameters ˆ ,  ,k
i ik K∈x  now represent potential routes (sets of deliveries to customers) 

for vehicle i, each of which covers a subset of the customer set J.  The recourse function 

includes expected penalties for violating time windows for deliveries, expected penalties 

for exceeding a maximum travel time, etc. (Kenyon and Morton 2003). 

 

3. Crew Scheduling (Vance et al. 1997, Day and Ryan 1997) 

Following the description in Vance et al. (1997), an airline crew-scheduler wishes 

to minimize the cost assigning of flight crews to flights in a fixed schedule of flights.  

Crew pairings define feasible trip itineraries that can be assigned to some crew.  Each 

crew pairing consists of a sequence of flights that starts and ends at a home base, respects 

limits on work hours, allows times for breaks, and satisfies numerous other restrictions.  
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Set-partitioning models are the norm for this type of problem (e.g., Vance et al. 1997, 

Day and Ryan 1997), and these fit a simplified form of CSSTP in which I is a singleton, 

b becomes a vector of 1s corresponding to flights that must be covered by crews, and 

convexity constraints (24) are eliminated; the columns ˆ k
i iA x  represent sets of flights a 

single crew can feasibly cover, i.e., pairings. 

However, “home-base constraints” may need to be enforced (Butchers et al. 2001, 

Medard and Sawhney 2004), and these simply modify (24) to 

 
i

k
i i

k K
u i Iλ

∈
≤ ∀ ∈∑ , (36) 

where I denotes the set of home bases, ui denotes the number of crews available at i I∈ , 

and the index set Ki now represents potential pairings for crews based at i.  For the 

recourse function, we suggest a probabilistic variant on the function that Ehrgott and 

Ryan (2003) use to penalize schedules that do not allow adequate time for crews to 

switch aircraft.  Their function is based on averaged historical information, but could be 

modified to represent a penalty function integrated over empirical or fitted delay 

distributions. 

 

4. Origin-Destination Integer Multi-Commodity Flow Problem 
  (Barnhart et al. 2000) 

This model is a restricted version of the linear multicommodity flow problem 

(Ahuja et al. 1993, chapter 17), where each commodity must be shipped from its origin to 

its destination using only a single path.  Therefore, its formulation resembles the well-

known path-oriented, i.e., column-oriented formulation, for the linear multicommodity 

flow problem (e.g., Ford and Fulkerson 1958, Ahuja et al. 1993, section 17.5, Bazaraa et 

al. 1990, section 12.4), but with binary variables.  The binary variables k
iλ  for this model 

represent the kth path for commodity i, and 1k
iλ =  indicates the decision to ship all units 

of commodity i by path k.  The paths are represented by arcs and the sum of all 

commodities flowing on all commodities over each arc must not exceed that arc’s 
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capacity.  Constraints (23) will handle these constraints by (i) adding slack variables, (ii) 

letting bj represent the capacity of arc j, and (iii) by defining ˆk
ij ia x  to be the amount of arc 

j’s capacity consumed by path k of commodity i.  The convexity constraints guarantee 

that only a single path, with appropriate origin and destination, is selected for each 

commodity. For a communications network, say, each component of the recourse 

function ( , )i i iE h  x ?%  might represent an expected, path-dependent penalty based on 

uncertain link availability (Girard and Sansó 1998) or uncertain “hop delay” (e.g.,  

Papagiannaki  et al. 2003) which is independent of congestion. 

 

C. SOLVING A STOCHASTIC FACILITY LOCATION PROBLEM BY 
BRANCH AND PRICE 

 

1. A Stochastic Facility Location Problem with Sole Sourcing 

A standard, deterministic, facility-location problem aims to identify the best 

locations for capacitated production facilities, which will ship to established customers to 

meet the customers’ demands for some product.  The mathematical model must find the 

best trade-off between variable and fixed costs (Laporte et al. 1994):  More open facilities 

leads to lower shipping (variable) costs because plants are closer to customers, on 

average; on the other hand, opening more facilities means more facility-installation 

(fixed) costs will be incurred.  The deterministic model typically assumes that all 

costumer demands will be completely satisfied, and, in the version we build upon, a 

unique facility satisfies each customer’s demand.  This latter assumption is known as 

sole-sourcing, and the resulting model is called the (deterministic) capacitated facility-

location problem with sole-sourcing (FLP) (Barcelo and Casanova 1984). 

Assume now that some uncertainty in the data arises in the nominally 

deterministic FLP: Does a manufacturer really know what his demands, capacities and 

costs will be in the future?  Let us represent that uncertainty through a discrete set of 

scenarios indexed by s, with ,  and s s sc d u representing shipping costs, customer demands 

and facility capacities in each scenario, respectively.  For simplicity, we assume that if 

the aggregate demand for a facility exceeds the facility’s capacity to produce, the facility 
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pays a penalty based on the unsupplied amount.  This model is reasonable if the 

“unsatisfied demand” is actually satisfied by the relevant facility acquiring extra product 

from an outside supplier and shipping it to customers as needed.  We are now ready to 

present a formulation for the SFLP: 

 

Stochastic Facility Location Problem with Sole-Sourcing (SFLP)  

Indices 
i ∈ I potential facility locations 

j ∈ J customers 

s ∈ S scenarios 

Data [units]            
ijc  average total cost for supplying the whole demand of customer j from facility i 

[dollars] 

if  fixed cost for installing a facility at location i [dollars] 

s
jd   demand of customer j, under scenario s [tons] 

s
iu   capacity of the facility i, under scenario s [tons] 

s
ip   penalty for each unit of unmet demand for facility i under scenario s [dollars/tons] 

sφ  probability of scenario s 

Decision variables [units]     

xij 1 if customer j is assigned to facility i, and 0 otherwise 

ix′  1 if facility i is opened, and 0 otherwise 

s
iy  amount of unmet demand for facility  i, under scenario s [tons] 

Formulation (SFLP) 
 

, ,
min s s

i i ij ij s i i
i I i I j J s S i I

f x c x p yφ
′ ∈ ∈ ∈ ∈ ∈

′ + +∑ ∑ ∑ ∑ ∑
x x y

 (37) 

 s.t. 1ij
i I

x j J
∈

= ∀ ∈∑  (38) 

 0 ,i ijx x i I j J′− + ≤ ∀ ∈ ∈  (39) 
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 ,s s s
j ij i i

j J
ud x y i I s S

∈
≤− ∀ ∈ ∈∑  (40) 

                                                                    {0,1} ,ijx i I j J∈ ∀ ∈ ∈  (41) 

                                                                                       {0,1}ix i I′ ∈ ∀ ∈      (42) 

                                                                                       0 ,s
iy i I s S≥ ∀ ∈ ∈ .    (43) 

This type of formulation is known as the extensive form of a stochastic program 

(Birge and Louveaux 1997, p. 8), because the second-stage variables and constraints are 

made explicit for all scenarios.  

2. A Column-Oriented Formulation for SFLP   

Here we describe a column-oriented formulation for SFLP (CSFLP) that fits 

directly into the format of CTSSP.  In this formulation, we use the word assignment to 

represent any collection of customers that are served by the same facility.  Actually, the 

forms of CSFLP and CSEGAP are identical, requiring only redefinition of indices and 

variables (and definitions from SFLP which will not be repeated): 

 

Column-Oriented Formulation of SFLP (CSFLP) 

Indices 
k ∈ Ki assignments of customers to a given facility i 

Data [units] 
ˆk
ijx   1 if customer j is assigned to facility i in the kth assignment of customers to 

facility i 

ˆk
ic  total expected cost of the kth assignment of customers to facility i 

( ˆ ˆ ˆk k s s
i ij ij s i i i

j J s

c c x p y fφ
∈

= + +∑ ∑ , except the empty assignment has ˆ 0k
ic =  ) [dollars] 

Decision variables  
k
iλ  1 if the kth assignment of customers to facility i is chosen, and 0 otherwise; 

 

Formulation (CSFLP): Same as (32)-(35) 
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A column-oriented formulation like CSFLP cannot normally be solved directly 

because it is impossible, or impractical, to create the full set of columns.  Therefore, each 

Ki is replaced by a subset to form a restricted master problem (RMP).  The solution to the 

LP relaxation of the RMP (LP-RMP) then yields dual variables, which can be used to 

identify new columns with favorable reduced cost through one or more column-

generation subproblems.  In the case of CSFLP, for any facility i, the following 

subproblem arises (assuming the RMP contains all empty assignments; see below):    

ˆ ˆ( , )i iµCSUB p     

 ( )
,

ˆ ˆmin
i i

s s
ij j ij s i i i i

j J s S
c x p y fπ φ µ

∈ ∈
− + + −∑ ∑

x y
 (44) 

 s.t. s s s
j ij i i

j J
ud x y s S

∈
≤− ∀ ∈∑  (45) 

 {0,1}ijx j J∈ ∀ ∈  (46) 

                                    0s
iy s S≥ ∀ ∈ , (47) 

 
where ˆ jπ  is the optimal dual variable from the LP-RMP associated with constraint (33) 

for customer j, and ˆiµ  is the optimal dual variable from the LP-RMP for of the convexity 

constraint (34) associated with facility i.  By assuming that the customer demands are 

satisfied entirely with penalties associated with facilities, only the expected values of the 

random total shipment costs need be considered.  Therefore, if ijc′%  denotes the random 

shipping cost for unit of customer j demand supplied by facility i, the total expected 

shipping cost for facility i to customer j is [ ]ij jE c d′ %% , or, if shipping costs and demands are 

independent, [ ] [ ]ij jE c E d′ %% . 

The solution of ˆ ˆCSUB ( , )i iµp  represents an assignment of customers to a given 

facility i, and its optimal objective function value is the reduced cost of this assignment 

with respect to the current solution of the LP-RMP.  Therefore, a negative reduced cost 

indicates that this assignment, ˆ k
ix , should be translated into a column for the RMP and 

inserted into it.  The assignment’s cost in the LP-RMP will be 
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ˆ ˆ ˆk k s s
i ij ij s i i i

j J s

c c x p y fφ
∈

= + +∑ ∑ .  The fixed cost fi appears as a constant because we include 

all empty assignments ˆ k
i =x 0 , which have costs ˆ 0k

ic = , as part of the initial set of 

columns in the RMP, and all new assignments must incur the fixed cost.  

  

3. Solving the Column-generation Subproblems 

The subproblems ˆ ˆCSUB ( , )i iµp  are multi-dimensional knapsack problems 

(Weingartner and Ness 1967) with elastic penalties in each dimension; Kleywegt et al. 

(2002) refer to these as static stochastic knapsack problems.  We solve them through 

straightforward branch and bound, except that we add “explicit constraint branching” 

(Appleget and Wood 2000) by defining the general integer variables gi and adding the 

following constraint to each subproblem i: 

 0ij i
j J

x g
∈

− =∑ . (48) 

The variable gi is an “ECB variable” and receives a higher priority for branching 

than do the xij.  Intuitively, constraint branching, explicit or implicit, provides a better 

balanced branch-and-bound enumeration tree, and this tends to reduce total enumeration 

(see Ryan and Foster 1981).  

 

4. Enhancing Branch and Price 

Branch-and-price algorithms (e.g., Savelsbergh 1997, Barnhart et al. 1998, 

Barnhart et al. 2000) are appearing as complements to the branch-and-cut algorithms, 

which can be found implemented in practically all commercial MIP solvers.  B&P 

algorithms combine branch-and-bound techniques with column-generation procedures.  

Achieving good performance with algorithms based on column-generation is difficult 

(Lübbecke and Desrosiers 2002), but a number of enhancements to the basic procedure 

can help, e.g., stabilizing the dual variables used for column generation, strong branching.  

Chapter II has shown that such refinements do, in fact, lead to substantially faster 

solution times, so this chapter takes advantage of them.  We now comment briefly on the 

enhancements used in this work 
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By applying duals stabilization, we try to accelerate the column-generation 

process used to solve the linear relaxation of the CSFLP; we follow Du Merle et al. 

(1999) for this purpose.  The main idea is to use a dynamic elastic trust region for the 

dual variables, such that penalties are applied when the dual values lie beyond the 

nominal trust region limits.  The trust region is dynamic because it is continuously 

resized and the penalties adjusted based on the most recent values of the dual variables.  

Strong branching (Johnson et al. 2000) is another feature used in our B&P 

algorithm.  In order to improve branching efficiency without increasing subproblem 

complexity, a set of variables that appear attractive for branching purposes, rather than a 

singleton, is selected, and branching is carried out for each variable selected.  Child 

problems for each branch are created, and fully optimized, and the most attractive branch 

is followed.  “Most attractive” simply implies the branch with minimum objective 

function value for our implementation.  We only consider “strong-branching sets” of 

cardinality two:  This is a small number compared to standard applications of strong 

branching, but the B&P paradigm requires much more work to re-optimize after 

branching, so this number must be kept small. 

The other enhancements are straightforward and they are explained together with 

the computational results.     

 

5. Computational Results 

We implement our B&P algorithm using software from the COmputational 

INfrastructure for Operations Research (COIN-OR, or simply COIN), which provides a 

repository of distinct libraries that can be integrated to build optimization algorithms 

(Lougee-Heimer 2003).  The specific library in COIN that provides the basic framework 

for a branch-and-price algorithm, called BCP, is originally designed to be executed in a 

parallel/distributed environment, and the protocol that emulates this environment in a 

serial one, incurs some computational overhead.  The largest portion of this overhead 

results from the branch-and-bound tree being managed separately from the code that 

solves the LP-RMPs.  We believe that this overhead could be avoided with some 

additional programming, so we have excluded that overhead from the times we report, 

denoted total time (TT).  However, we note that the true CPU time for our 
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implementations are never more than 10% longer than TT and the mean overhead for all 

problems solved in this section is 3.1%.  

We have implemented our B&P algorithm also using COIN’s open solver 

interface (OSI), coupled with CPLEX 8.0.  Thus, the linear relaxation of the RMP and the 

subproblems are submitted to the CPLEX LP solver and MIP solver, respectively.  We 

carry out all tests on a networked workstation with a 2 GHz Pentium 4 processor and 1 

GB of RAM; computing times are measured in CPU seconds.  For comparison, we also 

directly solve the compact formulations of the SFLP problems using CPLEX 8.0.  

Solution times for this methodology are presented under the label “IP CPX” in the tables 

below. 

We investigate eight groups of problems.  Each group is defined by “problem 

size,” meaning “number of facilities - number of customers”.  The groups used have the 

following problem sizes: 5-15, 5-30, 8-24, 8-48, 10-30, 10-40, 10-50 and 10-60.  And for 

each problem size, we consider instances with one, ten or fifty scenarios.  The one-

scenario problem represents a deterministic model.  (We investigate the current limits of 

our technology by expanding the number of scenarios, facilities and customers in section 

C.7.)  Because run times vary somewhat between instances of the same size, we examine 

five different instances for each combination of problem size and number of scenarios. 

To generate the test problems, we first create a reference problem according to the 

following rules:  (i) Customer demands dj are integers from a discrete uniform 

distribution U(5,25),  (ii) cost coefficients are integers from U(15,25), (iii) facility 

capacities are 0.8 /i j
j J

u d I
∈

= ∑ , and  (iv) the fixed cost for each facility is 1.5 times the 

value of its capacity, ui, in the reference problem.  Chu and Beasley (1997) use rules (i) 

and (ii) to generate the “small instances” of the generalized assignment problem in their 

research.  For the stochastic instances, the demands are uniformly distributed within 

±20% of their value in the reference problem, while the capacities are ±10%.  The 

additional cost (penalty) a facility i pays for a unit of “unmet demand” it satisfies through 

an outside purchase is 0.4maxi ijj J
p c

∈
= . 
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Tables 8 and 9 show TT for each of the generated instances, solved by the IP, and 

by B&P, with and without duals stabilization; we wait until the following section to 

explore other enhancements to B&P.  The values in bold indicate the fastest times among 

the three algorithms.  Parameter settings for the duals stabilization are fixed for all 

problems tested; we have not attempted to optimize settings for each specific problem.  

We have arbitrarily set an upper limit of 7,200 seconds on total allowed computation 

time. 

 

 Problem Sizes (facilities-customers) 
 5-15 5-30 8-24 8-48 

Sc IP 
CPX 

No 
Stz Stz IP 

CPX 
No 
Stz Stz IP 

CPX 
No 
Stz Stz IP 

CPX 
No 
Stz Stz 

1 3.5 0.5 0.8 2.5 1.7 1.7 2274.9 1.1 14.5 5.8 5.0 2.7 
1 0.1 0.3 0.8 1.5 4.1 3.9 * 2.0 2.7 3.8 3.4 2.4 
1 3.2 0.6 2.0 0.9 1.4 1.9 274.1 1.6 1.8 4.5 6.4 2.7 
1 0.2 0.3 0.6 1.6 2.1 1.9 299.8 1.3 4.4 3.8 3.2 2.6 
1 3.6 0.5 1.4 8.6 2.4 2.8 1.8 0.8 0.9 5076.1 61.2 44.6 

10 1.3 1.1 1.6 4.2 3.7 3.7 881.0 4.8 9.1 142.4 7.9 4.2 
10 1.4 1.0 1.4 5.1 16.6 30.5 2987.5 4.3 7.0 39.7 6.7 5.7 
10 1.0 0.9 1.1 1.2 2.8 3.0 231.3 4.8 5.7 20.6 8.4 5.2 
10 0.4 0.6 1.3 2.4 3.2 3.6 16.4 2.7 2.9 19.8 6.7 5.9 
10 1.0 0.7 1.4 9.4 3.6 6.8 3.9 1.2 1.3 * 29.7 25.8 
50 2.5 2.3 3.0 4.9 10.1 10.2 1637.2 45.5 29.6 455.6 40.0 58.5 
50 3.1 2.3 4.4 11.0 11.1 11.1 5579.0 8.7 7.6 45.7 20.2 14.0 
50 2.8 2.3 2.7 3.4 7.8 8.5 1081.6 8.0 7.6 53.4 25.0 15.9 
50 1.3 1.4 3.1 4.3 8.6 10.1 57.4 5.8 6.0 129.1 24.3 20.9 
50 3.9 2.7 3.3 12.2 12.1 10.7 6.6 4.2 4.2 990.2 80.1 114.6 

Table legend: 
Sc:  Number of scenarios 
IP CPX: CPLEX MIP solver with presolver on  
No Stz: Branch and price without duals stabilization   
Stz: Branch and price using duals stabilization    
*  Problem not solved to optimality after 7,200 CPU seconds. 

Table 8.   Total time (TT) in CPU seconds for randomly generated SFLPs.  The 
solution methods used are (i) branch and bound on the extensive formulation 
using the CPLEX solver, (ii) B&P without duals stabilization, and (iii) B&P 
with duals stabilization.  Numbers in bold indicate the fastest of the three 
competing solution methods. 
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 Problem Sizes (facilities-customers) 
 10-30 10-40 10-50 10-60 

Sc IP 
CPX 

No 
Stz Stz IP 

CPX 
No 
Stz Stz IP 

CPX 
No   
Stz Stz IP 

CPX 
No 
Stz Stz 

1 * 16.7 17.0 15.0 3.0 2.2 * 67.5 143.0 21.5 6.8 3.8 
1 3.5 1.1 1.1 7.0 2.1 2.1 * 53.8 50.8 22.3 11.0 5.3 
1 44.8 1.0 1.5 13.6 2.8 2.1 1656.8 9.7 7.2 14.8 8.3 4.4 
1 1.4 1.3 1.5 * 36.2 10.2 * 116.8 99.1 13.5 11.9 5.2 
1 * 5.3 19.5 6.4 3.2 1.7 50.0 5.5 4.1 23.8 13.4 4.3 

10 * 10.3 12.9 2322.7 6.0 4.0 * 20.6 13.9 37.2 16.7 8.0 
10 5.2 2.4 1.8 860.1 5.2 3.8 * 310.4 424.2 3163.1 30.2 22.4 
10 7.0 3.3 2.6 262.1 5.6 4.1 * 18.0 14.1 140.5 23.1 14.5 
10 5.0 2.0 2.1 * 53.6 77.2 * 19.7 11.7 45.6 14.2 10.8 
10 * 15.0 29.4 612.7 5.1 11.2 * 20.5 41.2 30.7 19.7 9.6 
50 * 16.2 15.6 3347.0 20.6 14.2 * 99.1 127.2 154.6 37.7 18.8 
50 12.6 6.5 7.1 1893.9 14.5 11.6 * 37.9 22.9 * 60.0 50.7 
50 51.7 7.7 10.7 573.0 14.8 11.3 * 112.3 171.7 132.3 47.9 39.9 
50 16.6 6.7 6.0 * 30.8 27.3 * 33.9 27.9 97.1 34.4 21.5 
50 * 26.0 115.0 3559.3 17.3 12.3 * 72.7 111.5 213.3 39.7 22.2 

Table legend: same as Table 8 

Table 9.   Total time (TT) in CPU seconds for randomly generated SFLPs.  The 
solution methods used are (i) branch and bound on the extensive formulation 
using the CPLEX solver, (ii) B&P without duals stabilization, and (iii) B&P 
with duals stabilization.  Numbers in bold indicate the fastest of the three 
competing solution methods. 

 
6. Discussion        

One might be concerned that B&P requires so much overhead that it could not be 

effective for small problems.  However, the problems in Table 8 have only five or  eight 

potential facilities, and  IP outperforms B&P only in problems with five facilities, and 

then only by a small amount.  Moreover, average solution times for B&P are at least an 

order of magnitude faster than IP, and IP cannot even solve two of the problems within 

the time limit of 7,200 CPU seconds.  Even for small problems, B&P is the right choice. 

Table 9, which covers problems with 10 facilities, clearly shows that B&P 

solution times are more stable and suffer less when the number of scenarios is increased.  

We can see that 23 problems out of 60 could not be solved by IP within 7,200 CPU 

seconds, and IP never outperforms B&P.  Moreover, B&P can be orders of magnitude 

faster than solving the original problem for single-scenario problems, i.e., for 

deterministic problems. 
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7. Pushing the Limits 

We now test our approach for solving problems with a larger numbers of 

facilities, customers and scenarios.  The problem sizes (facilities-customers) are 10-60, 

20-60, 15-80 and 20-100 here.  Camm et al. (1997) solve a facility-location model for a 

commercial application with 17 potential facilities and 123 customer zones, so our largest 

problem is roughly the same size as at least one real-world problem.   A larger number of 

scenarios will be useful when the solution method is based on sample average 

approximations (Mak et al. 1999).        

 

Problem Size (facilities-customers) Number 
of 

scenarios 10-60 20-60 15-80 20-100 

50 36.4 64.6 47.2 137.2 
50 35.2 55.7 65.1 257.2 
50 26.9 58.1 54.6 108.2 
50 35.9 62.1 44.0 106.0 
50 26.7 53.4 106.6 154.9 

100 48.2 136.8 132.7 229.6 
100 68.4 96.5 108.0 829.6 
100 56.2 109.4 238.3 165.7 
100 73.0 123.9 75.6 150.0 
100 51.0 90.4 76.3 257.0 
200 134.6 245.3 181.5 513.0 
200 131.3 199.4 302.2 1294.6 
200 103.7 168.9 762.1 260.7 
200 134.0 184.5 157.1 272.2 
200 103.8 174.4 156.5 555.0 
300 154.8 374.4 305.4 507.8 
300 248.7 305.8 391.2 817.0 
300 144.6 250.0 654.1 535.4 
300 164.0 320.9 493.2 493.2 
300 210.8 276.0 274.4 687.1 

Table 10.   Total time (TT) in CPU seconds for randomly generated SFLPs with scenario 
uncertainty.  This table explores the computational limits of our current B&P 
implementation with duals stabilization.   

We can see here that solution times tend to increase only slowly, perhaps linearly, 

with the number of scenarios.  Thus, the number of scenarios does not seem to be a 
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strongly limiting factor with the B&P methodology.  This bodes well for solving an 

SMIP through sampled approximating problems, since the probability of identifying the 

optimal solution for a discrete TSSP increases exponentially with the number of sampled 

scenarios (Kleywegt et al. 2002). 

       

D. SOLVING A SPECIAL CASE OF SFLP EXACTLY 

Here we wish to investigate a special case of the SFLP in which a number of the 

parameters are independent, continuously distributed random variables.  Models making 

similar assumptions appear frequently in the stochastic programming literature (e.g., 

Louveaux and Peeters 1992, Laporte et al. 1994); however, such models are rarely solved 

exactly as we shall solve SFLP.  Even if the reader believes such assumptions are 

unreasonable in a real-world facility-location problem, it is instructive to see that exact 

solutions can be achieved for such a model in this column-oriented framework.  Perhaps 

these assumptions will be more appropriate in another application of our methodology. 

Consider now a random vector vec( , , )=? c d p% %% %  whose elements represent shipping 

costs, customer demands and unmet-demand penalties, respectively.  The column-

oriented formulation for SFLP with these random parameters resembles equations (32)-

(35), with the following modified definitions: 

Data [units] 
ijc%  shipping cost for supplying all of customer j’s demand from facility i [dollars] 

ijc  expected shipping cost [ ]ijE c%   [dollars] 

jd%   demand from customer j [tons] 

iu   capacity of facility i [tons] 

ip%   unit penalty for unmet demand that must be covered by facility i [dollars/tons] 

ip   expected unit penalty [ ]iE p%  [dollars/tons] 

ˆk
ic  total expected cost of the kth assignment of customers to facility i, 

ˆ ˆ ˆ[ ( , )]
i

k k k
i i i i i ic E h= +

?
c x x ?% % ) [dollars] or, more precisely, 



 58

 

 

ˆ0 if 0

ˆ
ˆ ˆ otherwise.

k
i

k
i k k

i i i j ij i i
j J

c
p E d x u f

+

∈

 =
  =    + − +      

∑

x

c x %  (49) 

 
 
1. Normally Distributed Demands 

For the special-case model, each customer j has demand jd%  which is independent 

and normally distributed with mean mj and variance vj, i.e., ~ ( , )j j jd N m v% .  Penalties 

can be continuously distributed random variables that are independent of demands.  In 

fact, with the assumption of independence, they appear in the objective function only 

through their means, so they may have arbitrary distributions as long as they have finite 

means.  For simplicity, we represent penalties through their vector of means p . 

For simplicity in exposition, we also assume that the means jm  and the variances 

jv  are integers, but this is only for simplicity in exposition.  The reader will see that our 

techniques easily extend to means j jmα  and variances j jvβ , where jα  and jβ  are 

positive scale parameters, and jm  and jv  represent integers running from 0 to some 

finite upper bound.  Given the efficiency of the dynamic-programming solution 

procedure that uses jm  and jv , the scale parameters can be quite small, and thus a wide 

range of actual mean and variance combinations can be closely approximated. 

The RMP for this model does not change from the column-oriented formulation 

CSFLP presented in section C.2.  To solve this special case exactly, we will solve the 

subproblems corresponding to the formulation (44)-(47) exactly.  Given equation (49),  

the subproblem associated with facility i is this static stochastic knapsack problem 

(Kleywegt et al. 2002): 

  

 ( )
{0,1}

* min
ij

ij j ij i j ij i i i
x j J j J j J

z c x p E d x u fπ µ
+

∈ ∀ ∈ ∈ ∈

     = − + − + −         

∑ ∑ % , (50) 
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where s+ ≡ max{0, s}.  Evaluating j ij i
j J

E d x u

+

∈

   −   
   

∑ %  is easy, because we know that 

(see Kleywegt et al. 2002)  

 ( )
2

, exp ,
2p 2

m v m
E w m v m

vv
+     = Φ + −          

%  (51) 

 

where ( ) ( ), ~ ,w m v N m v% .    

Ignoring the constraint-violation penalties for the moment, we apply dynamic 

programming to evaluate the function ( , , )g J m v  defined as 

 ( , , ) min ( )ij j ij
j J

g J m v c xπ
∈

= −∑  (52) 

                       s.t. j ij
j J

m x m
∈

≤∑  (53) 

 j ij
j J

v x v
∈

=∑  (54) 

 {0,1}ijx ∈ , (55) 
 
 

for max max0,..., , and 0,...,m m v v= = , where max max=  and j j
j J j J

m m v v
∈ ∈

=∑ ∑ .  The 

forward recursion is: 

Initialization: 

( , , ) 0 for 0, 0, 0;g j m v j m v= = = =  

( , , )  for 0, 0, 0;g j m v j m v= +∞ = ≠ ≠   

Recursion:  

 { }
max

max

1,...,
1,...,

1,...,

( , , ) min ( 1, , ), ( 1, , )ij j j j
j J
m m
v v

g j m v g j m v c g j m m v vπ
=
=

=

= − − + − − − . (56) 

 



 60

This recursion is similar to that for a two-dimensional knapsack problem, but for a given 

m, the objective value gi does not depend on v.  This variance will be used in a final 

calculation, however. 

 Now, since an assignment of customers to a facility i, ˆ ix , yields an aggregate 

demand with distribution ˆ ˆ,j ij j ij
j J j J

N m x v x
∈ ∈

 
 
 
 

∑ ∑ , the optimal objective value for (50) 

will be 

 ( ){ }
max

max max

*

1,...,
1,...,

min , , ( , )i i i i
m m
v v

z g J m v p E w m u v f µ+

=
=

 = + − + − 
% . (57) 

 

For the case where the facilities capacities iu%  are also independent and normally 

distributed, and independent of the customer demands, the method just described also 

qualifies with a slight modification:  The expectation in equation (57) changes to 

( )[ ], ( )i iE w m E u v Var u + − +  
% % % . 

 

2. Extensions 

The methodology described above will fit other problems, but numerical 

integration may be required.  In a general case, suppose each demand can be defined by 

1

jK

j jk j
k

d r m
=

= +∑% % where all jkr%  have a common distribution with mean 0 and variance v, 

and all mj are positive integers; all ui are deterministic, here.  Then, any aggregate demand 

j ij
j J

d x
∈
∑ %  can be described through its integer mean j ij

j J
m x

∈
∑ , and its scaled integer 

variance j
j J

v K
∈
∑ .  Thus, the recursion (56) applies with appropriate adjustments for the 

scaled variances.  And then, j ij i
j J

E d x u

+

∈

   −   
   

∑ %  can be easily computed by numerical 
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integration over the distribution of j ij
j J

d x
∈
∑ % , which is completely defined by its bounded 

integer mean, its bounded scaled-integer variance, and the common distribution for jkr% . 

 

3. Computational Results for Normally Distributed Demands 

To build the test instances for this special case, we select all problems with one 

scenario solved in section C, and assume that their demands represent expected values of 

the normally distributed demands used here.  Given the expected values for demands, we 

generate the variances as discrete uniform random variables on [1, Vj], where Vj is the 

maximum value that assures P( 0) 0.001jd < ≤%  (e.g., Spoerl and Wood 2003). 

Table 10 presents computational results.  The columns represent computational 

times using different combinations of enhancements applied to the B&P algorithm; the 

enhancements are cumulative, from left to right.  The enhancement “Solve one 

subproblem” means that as soon as a subproblem encounters a favorable column, no 

more subproblems are solved on the current column-generation iteration.  The column is 

added to RMP and its LP relaxation is re-solved.  The order of the subproblems is then 

randomized to ensure that algorithm does not focus on one subproblem at the expense of 

others.  “Delete poor columns” means that at every specified number of column-

generation iterations, all columns with reduced cost above a given threshold are deleted 

from the RMP.  The parameter settings remain constant for all problems. 
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Problem Size 

Facilities Customers 
Basic B&P +Duals  

stabilization 
  +Strong   
branching 

+Solve one 
subproblem 

+Delete poor 
columns 

  4.3 7.0 4.7 2.6 2.8 
  2.6 2.5 2.3 2.0 2.0 

5 15 2.0 1.2 1.2 1.0 1.0 
  4.1 3.8 3.8 3.2 3.3 
  3.6 3.4 3.4 2.0 2.0 
  79.1 62.9 61.9 42.2 42.4 
  46.4 34.1 34.5 21.3 21.5 

5 30 55.7 68.4 68.9 23.9 24.0 
  60.3 48.6 48.2 33.0 32.8 
  116.3 153.1 131.1 75.0 74.7 
  18.4 13.6 13.3 9.9 9.9 
  17.2 12.7 12.3 8.3 8.3 

8 24 42.2 25.0 24.7 33.3 32.9 
  14.9 8.7 8.6 7.2 7.2 
  35.8 24.0 24.0 16.2 16.2 
  143.2 77.9 78.2 58.8 58.8 
  158.7 90.1 89.0 71.6 70.4 

8 48 167.8 116.8 108.3 87.6 83.4 
  140.4 84.8 85.0 70.3 68.7 
  165.7 117.0 133.7 85.8 80.8 

  152 218 211 79 78 
  80 57 57 34 34 

10 30 111 59 60 39 40 
  118 64 64 38 38 
  59 78 78 30 30 
  151 88 88 58 59 
  277 157 156 112 113 

10 40 387 192 192 179 177 
  309 184 171 248 152 
  261 168 168 118 119 
  667 342 344 291 317 
  768 412 655 449 447 

10 50 932 1100 1165 753 711 
  658 650 652 385 417 
  644 288 287 233 221 
  1896 1166 1160 1742 1900 
  1617 933 941 1339 2648 

10 60 2404 1615 1618 1885 2557 
  1824 1358 1339 3086 2612 
  2157 1109 1101 838 859 

Table 11.   Total time (CPU seconds) to solve SFLP with B&P when demands are 
independent and normally distributed.  The columns represent the 
enhancements applied in the B&P algorithm, cumulatively from left to right.  
The times in bold font indicate the fastest solution time for each problem 
among the different combinations of enhancements, i.e., across each row. 
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4. Discussion        

The enhancements applied to the special-case instances always improve solution 

times.  Moreover, the solution times tend to be more stable among instances of the same 

size.  The benefits of the enhancements are also more consistent, indicating that “duals 

stabilization” should be defined as a default option for this special case. 

The results displayed in Tables 8 and 11 indicate that B&P performs better on 

problems with a smaller customers-to-facilities ratio.  This also happens in small 

deterministic integer problems, where that ratio positively is correlated with the number 

of feasible solutions the problem instances have (Savelsbergh 1997, chapter II of this 

dissertation).  In turn, the number of feasible solutions is positively correlated with the 

number of columns in the column-oriented model, and the more columns a problem has, 

the harder it is to solve.  We have also tested the enhancements used in this section on 

problems with scenario uncertainty; however, beyond duals stabilization, our experiments 

do not show the consistent improvements as seen here.  Even among problems of the 

same size, we have difficulty finding a combination of enhancements that is consistently 

effective.  

 

E. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

1. Summary 

This chapter has proposed column-oriented formulations for a class of two-stage 

stochastic mixed-integer programs (TSSPs), and has shown how to solve such models 

using a branch-and-price algorithm (B&P).  For demonstration purposes, we use this 

methodology to solve a stochastic facility-location problem (SFLP) using a scenario 

representation of uncertainty.  In addition, we formulate and solve a special case of SFLP 

assuming certain continuous distributions for uncertain parameters, and demonstrate how 

B&P can solve that problem exactly.  We also provide examples of other well-known 

optimization problems whose stochastic versions fit our new solution approach. 

Our B&P algorithm is based on the framework provided by the open-source 

libraries of the COmputational INfrastructure for Operations Research (COIN-OR, or 
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simply COIN) and CPLEX 8.0 is used as the LP and MIP solvers.  Moreover, we 

demonstrate how the algorithm performance can be improved by duals stabilization and 

other techniques.   

 

2. Conclusions 

This research demonstrates that B&P is an attractive solution alternative for 

certain mixed-integer TSSPs.  For the SFLP with a scenario representation of uncertainty, 

computational results show that B&P can be orders of magnitude faster than solving the 

original problem by branch and bound, and this can be true even for single-scenario 

problems, i.e., for deterministic problems.  When solving the SFLP with continuously 

distributed random parameters, the enhancements to B&P we investigate substantially 

improve solutions times.  However, except for duals stabilization, the effects of the 

various enhancements are not consistent with the effects observed in the model with 

scenario uncertainty. 

 

3. Recommendations for Further Work 

The B&P approach can be used to solve, at least approximately, TSSPs of the 

class described in section B, but with more general probability distributions.  For 

instance, sample-average approximations (Mak et. al 1999, Kleywegt et al. 2002), a 

method of for solving TSSPs, provides probabilistic guarantees on solution quality and is 

based on repeated solutions of sampled approximating problems.  However, a sampled 

approximating problem is identical to a stochastic program using a scenario 

representation of uncertainty. 

Sampled subproblems can be used to identify favorable columns in a “nearly 

exact algorithm,” too.  Suppose that once a subproblem’s integer variables are fixed for a 

column, the expected cost of the column can be estimated extremely accurately through 

sampling.  This certainly holds for the SFLP, where the penalties associated with, say, 

10,000 sampled demands for some fixed facility-to-customers assignment can be sampled 

and averaged in a fraction of a second.  For all intents and purposes, that average will 

exactly equal the expected cost for the column, and an LP-RMP containing such columns 
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would yield exact dual solutions.  The only difficulty with this procedure would be that 

solution of the sampled subproblem might indicate that a column is favorable, but 

extended sampling would reveal that it is not.  If we solve many sampled subproblems 

and cannot identify an improving column, then we might become convinced that we 

have, in fact, solved the LP-RMP.  However, a formal procedure will need to be 

constructed to provide a rigorous “level of conviction.” 
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 IV. SUMMARY, CONTRIBUTIONS AND FUTURE WORK  
 

This research first demonstrates improvements in the performance of branch-and-

price algorithms (B&P) for solving integer programs by applying enhancements such as 

stabilizing dual variables during column-generation, performing strong branching, 

inserting multiple near-optimal columns from each subproblem, and heuristically 

improving feasible integer solutions.  Subsequently, we propose a new column-oriented 

formulation for a class of two-stage stochastic mixed-integer programs (TSSPs) and show 

how the B&P methodology applies to their solution.  For demonstration purposes, we use 

this methodology to solve a stochastic facility-location problem with sole-sourcing 

(SFLP).  The first version uses a scenario representation of uncertain demands, costs and 

penalties, and the second represents those parameters as independent, continuously 

distributed random variables.  Demands are normally distributed (other possibilities are 

discussed), but the distributions of other parameters are nearly arbitrary as they can be 

represented through their means.  Both versions of SFLP are solved exactly. 

 

A. CONTRIBUTIONS  

This research has advanced the state of the art in integer programming by 

bringing a number of techniques into the B&P framework, improving its performance 

without breaking its structure.  Stabilizing dual variables during column-generation is 

clearly the most important technique, reducing considerably the time spent to solve the 

LP relaxation of the column-oriented B&P master problem (LP-RMP).  This technique 

views the LP-RMP in term of its dual formulation, and applies a dynamic, elastic trust 

region to its solution (Du Merle 1999).  Strong branching (Johnson et al. 2000) is used to 

successfully in some problems to increase the branching efficiency without making the 

subproblems more complex.  The other features that we fit into the B&P structure are (i) 

inserting multiple near-optimal columns from each subproblem, (ii) improving feasible 

integer solutions heuristically, and (iii) culling unprofitable columns from the LP-RMP 

periodically.     
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By adding those features, B&P reaches a new level of usefulness as a tool for 

solving mixed-integer programs.  

Our results also show that B&P works well even with small problems that can be 

readily solved by standard branch and bound.  This contrasts with the view that B&P, 

because of substantial overhead, is suitable only for large problems (Barnhart et al. 1998).   

Using the generalized assignment problem for testing in chapter II, this research 

identifies situations in which B&P tends to perform better than branch and bound on the 

compact formulation of a problem, and when the opposite tendency arises.  In particular, 

B&P seems to work better on problems with fewer feasible solutions, which tend to be 

the difficult ones for branch and bound.  (Fewer feasible solutions mean that the explicit 

column-oriented formulation has fewer variables, and problems with fewer variables tend 

to be easier.)  This makes B&P an important complement to the set of potential solution 

techniques for integer programs. 

We have also proposed, although not tested, techniques for modifying the B&P 

structure to operate with side constraints that would normally be assumed to eliminate the 

possibility of a B&P solution. 

This research also extends the use of B&P to a class of stochastic mixed-integer 

programs.  A stochastic-facility location problem with a scenario representation of 

uncertainty can be solved orders of magnitude faster with B&P than it can by branch and 

bound, and this can be true even for single-scenario problems, i.e., for deterministic 

problems.  We also show how to solve certain SFLPs with continuously distributed 

random parameters, and demonstrate how the enhancements to B&P can reduce solutions 

times substantially.  However, except for duals stabilization, their effects are inconsistent 

with the effects observed in the scenario-representation model.  This general approach is 

new, and certain classes of problems can be solved exactly, compared to standard 

methods that typically provide only probabilistic or asymptotic guarantees on solution 

quality. 

We have implemented B&P using the resources from the COmputational 

INfrastructure for Operations Research (COIN-OR, or simply COIN), which comprises a 
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set of distinct libraries that can be integrated to build optimization algorithms.  The 

library used is called Branch-Cut-Price (BCP) (Lougee-Heimer 2003), which is a C++ 

framework for solving mixed-integer programs in parallel on a distributed network of 

workstations.  We have shown that COIN/BCP will run successful under Microsoft 

Windows, even before the COIN/BCP literature has claimed this ability.  We believe that 

our work will help making COIN’s B&P technology accessible to a wider audience.   

      

B. FUTURE WORK  

The possibilities for future work abound.  With regards to implementation of 

B&P, the COIN/BCP framework should be simplified to achieve better performance 

when running in a serial environment (instead of the parallel/distributed environment for 

which it has been built.)  On the other hand, B&P algorithms are highly suitable for 

running in a parallel/distributed environment (Ralphs et al. 2003), and we look forward to 

testing our code there.  The code conversion should be straightforward since the 

COIN/BCP library provides the necessary support. 

With regards to B&P and stochastic programming, we see three main areas for 

future work:  (i) Applying the technique to new models of the problem class we have 

described here, (ii) developing algorithmic variants that provide probabilistic guarantees 

for the solution quality when subproblems cannot be solved optimally, and (iii) extending 

the application of B&P to a wider class of stochastic models, including multi-stage 

models. 
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